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Radiative correction in approximate treatments of electromagnetic scattering
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The transition-matrix (7 -matrix) approach provides a general formalism to study scattering problems in
various areas of physics, including acoustics (scalar fields) and electromagnetics (vector fields), and is related to
the theory of the scattering matrix (S matrix) used in quantum mechanics and quantum field theory. Focusing on
electromagnetic scattering, we highlight an alternative formulation of the 7-matrix approach, based on the use of
the reactance matrix or K matrix, which is more suited to formal studies of energy-conservation constraints (such
as the optical theorem). We show in particular that electrostatics or quasistatic approximations can be corrected
within this framework to satisfy the energy-conservation constraints associated with radiation. A general formula
for such a radiative correction is explicitly obtained, and empirical expressions proposed in earlier studies are
shown to be special cases of this general formula. This work therefore provides a justification of the empirical
radiative correction to the dipolar polarizability and a generalization of this correction to any types of point or
body scatterers of arbitrary shapes, including higher multipolar orders.
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L. INTRODUCTION units are used throughout. We also define the wave vector
in the medium k; = ,/€;w/c. The electrostatics approxima-
tion consists in approximating « by oy, even if the new
polarizability « is in principle different from oo because the
electrostatics solution does not account for radiation. The
power radiated (or scattered) in this approximation is therefore

Py = ((x)k%|O[()|2|Einc|2)/(127[6061). The power absorbed by

Radiative reaction, also known as radiation damping, refers
to the fact that the electromagnetic (EM) field created by a
charge or emitter must affect its own dynamics (e.g., motion or
power radiated) [1]. When applied to elementary charges [2],
no satisfactory classical treatment of this effect has been found

[3], yet the radiative reaction is at the core of the concepts of the particle is approximated by its electrostatics value Py, —=

self-energy and renormalization in quantum electrodynamics PO The extinguished power is the power extracted by this

(QED) [1]. In fact, using a Green’s function approach and ab . ..
regularization techniques akin to those of QED, a classical point dipole from the incident EM field (the work of the

S . . L field on the dipole) and is Pey = (1/2)w Im(a)|Ejyc|? in the
treatment of the radiative reaction for point electric dipole pole) ext = (1/2) (@) .”‘Cl .
scatterers can be obtained [4] general case. It therefore reduces in the electrostatics approxi-

5 . . . mation (o ~ ag) to P.y = Py, which appears to contradict
Interestingly, an equivalent result had been obtained heuris- ( 0) e abs>, pp .
. . . . the energy-conservation condition Pext = Psca + Paps. This
tically by adding a reaction field postulated from simple . .. . . :
- is not so surprising since the electrostatics solution does
energy-conservation arguments [5]. These arguments were . . .
. ; . . not account for radiation (scattering) effects. In fact, there
inspired by research into simple models of the optical . L . L
. . . is no contradiction in the strict range of validity of the
properties of subwavelength particles, notably for applications . N . . . -y
. . electrostatics approximation, i.e., in the limit of vanishing
in plasmonics and surface-enhanced Raman spectroscopy [6],

. .. .. 7. size, as we then have P, Pext, Paps Since «q scales with
and we briefly present a similar derivation here. The main idea . sca K Fext, Fabs SINCE Ao SCE
. . . . particle volume. Nevertheless, it is useful in many instances
is to use the solution of the electrostatics problem to derive

an approximate dipolar polarizability  for the particle. o, to correct this problem to extend the range of applicability

. . L . of the electrostatics approximation. This can be achieved,
assumed isotropic here for simplicity, defines the electrostatics . . .
. . . as proposed in Ref. [5], by defining a radiation-corrected
response of the particle and is such that a uniform external

electrostatic field Eq induces a dipole moment py = aoEo. In polarizability, which by construction enforces the energy-

. conservation condition Py, = P, Py, 1.€.,
such an electrostatics problem, the power absorbed by the ext sea F Fabs

particle equals the work done by the external field on the : | Im(a®S) I | N e "
ml—s|=—>=Im|—— .
aRC |aRC|2 o 6T €p€]

charges [3] and is therefore PO = (1/2)w Im(a)|Eo|>.

abs
In the electrostatics, or quasistatic, approximation, also

often called Rayleigh approximation (see, e.g., Chap. 5 in

Ref. [7]), the far-field optical response of a subwavelength
scatterer to an incident electric field E;, oscillating at
frequency w is approximated as that of an oscillating in-
duced dipole given by p = «Ej,.. Note that we use complex
notations with the exp(—iwt) convention and also that SI
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This condition on the imaginary part only is not sufficient to
define o€ uniquely (unless Kramers-Kronig relations [8] are
used) and the additional condition that Re(1/aR¢) = Re(1/ap)
is usually assumed without further justification to obtain the
radiative correction to the polarizability as
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or, equivalently [5],

e 3)

@ =
1—i—

¥o

6mepe;

This expression can also be derived rigorously in the special
case of spherical particles by expansion of the Mie coefficients
[7,9] and can be generalized to spheroidal particles [5,10]. This
corrected polarizability has been used in numerous contexts,
including, for example, surface-enhanced Raman scattering
[5,6], plasmonics [10-12], or the discrete dipole approxima-
tion [13—16]. More recently, this radiative correction has also
been generalized, using again a heuristic approach based on
the optical theorem, to the case of point magnetic dipole and
dipolar scatterers with magnetoelectric coupling [17], for the
study of metamaterials.

In this paper, we propose a general framework for the study
and further understanding of the concept of radiative correc-
tion, based on a simple reformulation of the 7 -matrix approach
to EM scattering [18,19]. The T-matrix formalism, often used
in conjunction with the extended boundary condition method
(EBCM), or null-field method, was introduced more than
40 years ago [20] and is arguably one of the most elegant
and efficient methods to solve problems of electromagnetic
scattering by particles of arbitrary shape and size [19,21-26].
It has been applied, for example, to the study of scattering by
aerosols [27], metallic nanoparticles [28-31], and collections
of spheres [32], and also to more formal studies of EM
scattering [33]. It has also been used extensively for acoustic
scattering [26,34].

Our reformulation emphasizes the important role of the
reactance matrix, or K matrix [18,35], in relation to energy
conservation and radiative correction. Although the K matrix
has been used occasionally in the past in the context of the
quantum theory of scattering [18,35-37], it seldom appears in
EM theory. We show that all the aforementioned results for the
radiative correction in EM scattering are special cases of a gen-
eral formula derived in this work. In addition to highlighting
the importance of the K matrix for general scattering theory,
this work therefore provides a formal justification of existing
radiative-correction formulas and a generalization applicable
to any type of point scatterer or particle of arbitrary shape. The
latter point is a direct consequence of the fact that the 7-matrix
formulation of EM scattering is extremely general. It applies
to particles of arbitrary shape and may also cover, for example
[19,25], optically active or anisotropic materials, layered
particles, and multiple scattering by collections of particles.
The proposed K -matrix reformulation and associated radiative
correction are therefore applicable to all the aforementioned
cases.

The paper is organized as follows: In Sec. II, we briefly
review the general principles of the 7'-matrix approach to EM
scattering. We then introduce in Sec. III an alternative, but
closely related, formulation of the problem in terms of the K
matrix. In Sec. IV, we discuss the implications of the K -matrix
formulation with regard to radiative corrections and obtain a
general formula [Eq. (21)] for the radiative correction in EM
scattering. Finally, in Sec. V, we show explicitly how this
formula applies to specific cases of radiative correction that
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have been presented in the literature, therefore justifying, and
in some cases extending, these previously empirical results.

II. T-MATRIX APPROACH

A. Definition of the T matrix

We consider the general problem of electromagnetic scat-
tering by a body characterized by a linear local isotropic
relative dielectric function €, (possibly frequency dependent)
embedded in a nonabsorbing medium of refractive index n,
(and relative dielectric function €; = n%). Within the 7 -matrix
approach [21,22], the EM field solution is expanded in a
basis of vector spherical wave functions (VSWFs) in a similar
fashion as for Mie theory [7]. We here follow the conventions
of Mishchenko [19] for the definition of the VSWFs (see
Appendix A for details). The incident field E;,. and internal
field Eiy (the field in the region inside the particle) are
regular at » = 0 and can therefore be expressed in terms
of regular VSWFs denoted M(V,N(V. The scattered field
E,.. must satisfy the Sommerfeld radiation condition and
is therefore expanded in terms of outgoing spherical waves
VSWFs denoted MY, N Explicitly,

Eine(r) = Y a,M"(ki1) + b,NP (kyr),
Ee(®) =Y pMP(kir) + ¢, NP k), )

Ein(r) = Y ;M (kor) + d, NP ko),

where k; = (2w /M) /€ (i = 1,2) are the wave-vector ampli-
tudes inregions 1 (outside) and 2 (inside) and A is the excitation
wavelength. These expansions can be represented as vectors,
for example, (p,.q,) = (p,q) for the scattered field, where
the index v = (n,m) combines the total (n) and projected
(Jm| < n) angular momentum indices. The expansion of the
incident field (a,,b, ) for a given scattering problem is known,
with explicit expressions existing, for example, for plane
waves [19].

By linearity of Maxwell’s equations, the coefficients of the
scattered field are linearly related to those of the incident field.
This can be expressed explicitly by introducing the T matrix:

R

where T is an infinite square matrix, which can be written in

block notation as
Tl 1 Tl2
T= <T21 T2 ) (6)

In principle, from a knowledge of the 7 matrix (at a
given wavelength), one can infer the scattering properties for
any incident excitation. The T-matrix approach is therefore
particularly suited for computations of the scattering properties
of a collection of randomly oriented scatterers [38], which is
indeed one of the important applications of this formalism [19].
We note that linear relationships involving the expansion
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coefficients of the internal field can also be written as

(Z)::_P<;> and (3>==Q(;>' (7)

The T matrix can therefore also be obtained from
T=-PQ . (8)

This expression provides the basis for one of the most
common approaches to calculating the 7 matrix in practice,
namely, the extended boundary condition method (EBCM)
or null-field method [19,21,22,24]. Within this approach, the
matrix elements of P and Q are obtained analytically as surface
integrals over the particle surface of VSWF cross products.

B. Symmetry, unitarity, and energy conservation

The T-matrix satisfies [19,21] symmetry relations related
to optical reciprocity, along with unitarity relations related
to energy conservation, i.e., the fact that the extinction cross
section oey is the sum of scattering oy, and absorption oyps
(note that this is related to the optical theorem [7,39,40]). The
optical reciprocity relations are typically easy to check and
enforce as they are related (see Appendix D) to ensuring the
symmetry of certain matrices [21]. The energy conservation
condition is in general more problematic. It is typically
expressed by introducing the § matrix (scattering matrix)
defined as S = I 4 2T. For lossless (nonabsorbing) scatterers
[for which Im(e;) = 0], it can then be shown that energy
conservation is equivalent to S being unitary [19,21]. In terms
of the 7 matrix itself, this results in the somewhat more
cumbersome condition

T+ T/ = —2T'T, 9)

which can be viewed as the matrix form of the generalized
optical theorem [18,39].

In EM scattering, absorbing or conducting scatterers, for
which Im(e;) > 0 (we exclude the special case of perfect
conductors here), are also often considered and the equality
above no longer holds. In this general case, the inequality
Oext = Osca then requires that I — STS be a Hermitian positive-
semidefinite (HPSD) matrix (note that it is Hermitian by
construction) [19], which results in a relatively cumbersome
condition for T. The energy-conservation conditions for T can
therefore be summarized as

T+ T = —2TIT,
[-T — T' — 2T'T] HPSD.

Lossless:

(10)

General:

III. K MATRIX

A. Definition

We here highlight an alternative formulation of the T'-
matrix method, which simplifies the energy-conservation con-
dition and naturally provides a connection with the radiative
correction. Note that we will not here attempt to give arigorous
mathematical derivation, but rather focus on the new physical
insights. Our proposed formulation is related to the reactance
matrix or K matrix, which can be formally defined as the
Cayley transform of the S matrix [37] and has been previously
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discussed in the context of the general quantum theory of
scattering [18,35]. Explicitly, we have

K=iI-S)I+S)". (11)

A simple consequence of this definition is that S unitary is
equivalent to K Hermitian. In terms of the T matrix, we have

K=-iTI+T) "' =-id+T)'T. (12)
We note that T and K commute and we also have
K+ KT = —-iT =K+ TK, (13)

which, to pursue the analogy with quantum scattering, may
be viewed as the matrix version of Heitler’s integral equations
[1,18,35]. T can be obtained from K using

T=iKI-iK)!'=il-iK) K, (14)
or from the following property:
T'=—-iK'-1L (15)

Itis important to emphasize that the K -matrix and 7 -matrix
formulations are fully equivalent from a formal point of view.
However, in practice, since approximations are carried out
in computing K and T (at the very least, truncation of these
infinite matrices), the equivalence is no longer strictly valid.
We will in fact show that the K-matrix formulation is then the
most appropriate one in approximate treatments where energy
conservation needs to remain strictly enforced. This will lead
us naturally to a generalization of the radiative-correction
procedure discussed earlier.

B. Energy conservation and the K matrix

It is interesting to discuss the formal implications of the K -
matrix formulation for energy conservation. For nonabsorbing
scatterers, the unitarity of S, or Eq. (9) in terms of T, are
equivalent to K being Hermitian: K = K'. For a general
scatterer, the energy-conservation condition [Eq. (10)] can
be shown to be equivalent to (iK' — iK) being a Hermitian
positive-semidefinite matrix (for details see Appendix B).
More formally, this condition can be restated as K being
a dissipative matrix [41,42]. We can therefore rewrite the
condition (10) in terms of K as

K =K,
K dissipative ([i K' — iK]HPSD).

Lossless:
(16)

General:
These are much more natural conditions than those obtained
for T (or for S). We note that (iK' —iK) is simply, up
to a factor of i/2, the skew-Hermitian part of K and the
condition is therefore a generalization of Im(K) > 0 to the
case where K is a matrix. We can therefore naturally identify
the skew-Hermitian part of K as representing absorption while
its Hermitian part is linked to scattering and dispersion. There
is a clear analogy with simpler response functions such as
the susceptibility x = € — 1 of a material or the polarizability
o of a scatterer, for which Im(«) corresponds to absorption
(and is zero for lossless cases) and is subject to the condition
Im(e) > 0. In fact, the requirement that K be a dissipative
matrix suggests that it is the matrix analog of a scalar linear
response function [8] like the polarizability «, and should
therefore in addition satisfy causality and dispersion relations
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[43] akin to Kramers-Kronig relations. Such mathematical
developments are, however, outside the scope of this work. We
here only point out that in the case of nonabsorbing scatterers,
the conditions of optical reciprocity and energy conservation
on K become closely linked [this is because symmetry
and Hermiticity become equivalent for real matrices (see
Appendix D for further details)].

C. Relation to expansion coefficients

We now discuss how the K matrix relates to the field
expansion coefficients (in terms of VSWFs). Recall that the T
matrix represents the linear connection [see Eq. (5)] between
the field expansion coefficients of the scattered field E, (in
terms of outgoing spherical waves with VSWFs M) and N(»)
and those of the incident field E;,. (in terms of regular waves
with VSWFs M() and N(V). Multiplying Eq. (13) by the vector

(3), we deduce that

P\ .. [a+p
(q) _IK<b+q>' a7

The physical meaning of this expression becomes apparent
when we expand the total field outside the particle using the
basis (M(V, N M@® N@)_ where the latter two VSWFs use
the (irregular) spherical Bessel functions of the second kind
(which are superpositions of outgoing and ingoing spherical
waves), in contrast to the usual spherical Hankel functions of
the first kind (which are outgoing spherical waves only). For
this, we simply write M) = M1 +iM®, which separate the
outgoing spherical wave VSWF into a sum of regular (M")
and irregular (M®) contributions and obtain

Eout(r) = Einc(r) + Esca(r)
= (ay + pIMP(kir) + (by + )N (Kir)

+ip,MP (k1) + iq, NP (k;r). (18)

The coefficients (f;ig) in Eq. (17) can then be interpreted

as the the sum of the incident field and the regular part of the
scattered field; the latter can therefore here be viewed as the
regularized self-field, i.e., the nondiverging part of the field
created by the scatterer at its own position (r = 0). The K
matrix then represents (up to a factor) the linear connection
between the expansion coefficients of the scattered field with
those of the total field (incident + self-field). It can also be
viewed mathematically as the linear connection between the
expansions coefficients of the irregular part of the outside field
(i.e., those of M® N?) and those of its regular part (i.e.,
those of M{V,N(D). This latter remark can be used to show
that the K matrix can be computed as easily as the 7" matrix
in the most common implementation of the T-matrix ap-
proach, the EBCM [21,22]. Explicitly, we can show that (see
Appendix C for details)

K=PU ', (19)

where we have introduced the matrix U suchthat Q = P + iU,
which can be computed as easily as Q by substituting spherical
Hankel functions of the first kind, A\V(x) = j,(x) + iy,(x),
by irregular spherical Bessel functions y,(x) [note that j,(x)
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are the regular spherical Bessel functions]. In fact, iU can be
viewed as the irregular part of Q, while P is its regular part [ 19].
As a result, within the EBCM approach, K can be calculated
as simply as T, if not more simply.

One of the central themes of this work is to argue that
the formulation of the EM scattering problem in terms
of K is much more than a mere change of notation and
presents in some cases many advantages in terms of both the
practical implementations and the physical interpretations of
the method.

IV. FORMAL DERIVATION OF THE RADIATIVE
CORRECTION

A. Radiative correction and self-field

The observations in the last section provide a link with
the radiative correction [3,5] from the point of view of the
self-field or self-reaction. Using again the example of a point
polarizable dipole as illustration, the radiative correction can
be interpreted as the effect of the self-field, i.e., the field Egg
created by the scatterer onto itself, which acts in addition to the
incident field E;,.. The induced dipole is therefore written self-
consistently as p = ao(Eine + Esr), where o again denotes the
bare (uncorrected) polarizability. Since by linearity we have
Esr = Gp (where G is the electric Green dyadic [15] evaluated
at the dipole position, taken isotropic for simplicity), we obtain
p= o«RCE,,., where the corrected polarizability oRC satisfies

@ =o' - G. (20)

Classically, G diverges at the dipole position (which is why
regularization is necessary [4]), but its imaginary part is
finite and can be computed to recover Eq. (2). The K-matrix
formulation provides a formal generalization of this approach.
As mentioned earlier, the self-field is represented by the
regular part of the scattered field, i.e., the part of its VSWF
expansion including regular VSWFs M(" and N(" only.
Equation (17) is the generalization of p = a¢(Eiyc + Egsg). The
formulation in terms of K therefore automatically includes this
self-reaction. i K is analogous to Gy and represents the bare
response, while T is analogous to GaR® and corresponds to the
self-reaction-corrected response, i.e., the radiative correction.
This analogy is further reinforced by comparing Egs. (15)
and (20). This crucial point can be further developed to provide
a rigorous justification of the empirical radiative correction to
the dipolar polarizability using the K matrix, and by extending
this concept to more general cases.

B. Energy conservation in approximate treatments

In practice, a number of approximations may be made
when computing the 7 matrix; at the very least, truncation
is necessary. The energy-conservation conditions [Eq. (10)]
may no longer be satisfied by the computed 7" matrix, which is
clearly undesirable (it could, for example, result in a predicted
negative absorption cross section). The optical reciprocity can
be enforced a posteriori by appropriate symmetrization, but it
is more difficult to enforce energy conservation. In contrast,
the equivalent conditions on K [Eq. (16)] can more easily be
enforced even when approximations are carried out (they are,
for example, conserved upon truncation of the matrix).
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As anillustration, the T or K matrices may be approximated
by expansions of their matrix elements [7], for example, with
respect to the size parameter (the lowest order being akin to
the quasistatic or Rayleigh approximation), or with respect
to the refractive index (more precisely, n — 1) for optically
soft particles in the Born or Gans approximations [7]. In
such instances, the energy condition on T may no longer be
valid, notably because it mixes linear, e.g., T, and nonlinear
terms, e.g., TIT. On the other hand, the energy condition on
K only contains linear terms in K and can be preserved. For
example, the approximated K matrix will remain Hermitian
for nonabsorbing scatterers. We can therefore automatically
enforce Eq. (10) on T by deriving T from the approximated
K using Egs. (14) or (15). The reformulation of the scattering
problem in terms of K therefore provides a natural method to
enforce energy conservation in approximate treatments within
the T -matrix framework, and this can (for example) be applied
to the problem of radiative correction in EM scattering.

C. General treatment of the radiative correction to the
quasistatic approximations

To illustrate further the procedure for deriving the radiative
correction within the K -matrix approach, we focus specifically
on the important case of the radiative correction to the
electrostatics and magnetostatics (or quasistatic) approxima-
tions. These approximations can be obtained from the general
solution by taking the lowest nonzero order terms of the
long-wavelength limit as k; — 0. We will denote T and K
the corresponding limit of the 7' and K matrices. These can in
general be obtained from a direct solution of the electrostatics
or magnetostatics problem, which is typically much easier than
the full wave solution.

As explained already, in general, the approximate 7" matrix
T© does not satisfy strictly the T-matrix energy-conservation
condition [Eq. (10)]; it only satisfies it approximately to the ac-
curacy to which it was calculated, i.e., in the long-wavelength
limit as k; — 0. In contrast, it is relatively straightforward to
ensure that the approximate K matrix K satisfies exactly
the K-matrix energy-conservation condition [Eq. (16)]. If we
therefore compute the approximate 7' matrix from K©, using
for example Eq. (15), the resulting 7 matrix will automatically
satisfy the energy-conservation condition and can be identified
with the radiatively corrected T matrix TRC je.,

(TR = —((KO)' — 1. 1)

These arguments provide a simple procedure to find the
expression for the radiative correction for a given problem:

(1) Solve the electrostatics and/or magnetostatics problem
and find the corresponding K@, which should satisfy the
energy-conservation condition for K [Eq. (16)].

(i) Apply Eq. (21) to find the T matrix with radiative
correction.

We note that for point scatterers, the first step is in fact
implicit in the definition of its EM response, for example,
p = ooE for an electric dipole. We also note that the matrix
elements of T and K© are of order kf or higher. As a result,
the product KOT© is of order at least k9, and from Eq. (13),
we therefore have the following approximation for the matrix
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elements to lowest nonzero order:
K(O) = —iT(O), (22)

which can be used in many cases to find K© with standard
methods and results in

(TR = (T ' -1 (23)

This method can be used to generalize the concept of
radiative correction to any type of scatterer, punctual, or bodies
of arbitrary shapes, including arbitrary multipole orders and
interactions between multipoles. Specific examples that have
been recently studied by other means include point multipoles
(quadrupole, etc.) [44], bianisotropic lossless point dipole
scatterers [45], and point magnetic and electric dipoles with
magnetoelectric coupling [17]. The expressions obtained in all
these studies are in fact special cases of Eq. (21) as we shall
explicitly show in the next section. It is also interesting to note
that Egs. (15) and (21) can equally apply to study the radiative
correction to higher-order expansions of the polarizabilities in
terms of k; (as illustrated in the simple case of spheres in the
next section) or to expansions in terms of other parameters (for
example, n — 1 for optically soft particles).

V. APPLICATION TO SPECIFIC CASES

We now study in more detail how the arguments presented
so far can be applied to specific cases of interest, some of which
have been studied in the past using mostly heuristic arguments.
As we shall see, all examples of radiative corrections studied
so far in the literature are special cases of Egs. (15) or (21).
The only difficulty is to link the 7- and K-matrix formalisms
to more natural physical representations in terms of, for
example, polarizability, multipole moments, and multipole
fields. We therefore first show explicitly that this link is
relatively straightforward; in essence, it is simply a matter
of definition and units. We then focus in the rest of this section
on specific examples.

A. Physical interpretations of the vector spherical
wave functions

The T and K matrices provide relations between coef-
ficients of the expansions of the fields in vector spherical
wave functions (VSWFs). In practice, however, the excitation
and response of the system are typically expressed in a more
natural form. For example, the excitation may be in the form
of a constant external electric field (in electrostatics) or the
field of a plane wave. The response is often modeled in the
form of an induced dipole (or multipole), the electromagnetic
field of which implicitly represents the scattered field. For
the applicability of the formalism, it is therefore necessary to
link these physical excitations and responses to their VSWF
expansions. The VSWFs of the scattered field (M) and N$))
are outgoing spherical waves and can be readily identified [3]
with multipolar fields of order n (total angular momentum)
and angular momentum number m. N$) correspond to electric
multipoles (also called transverse magnetic [3]), while Mﬁfn)l
correspond to magnetic multipoles (also called transverse
electric). The expansion coefficients of the scattered field
(Pumsqnm) are therefore proportional to the magnetic and
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electric multipole moments of the scattered field (in a spherical
tensor representation). In a similar fashion, the expansion
of the incident field in terms of a series of regular VSWFs
MDD NDY can be viewed as the multipolar decomposition
of the incident field, also in a spherical tensor representation.
For an arbitrary incident plane wave, such an expansion can be
computed analytically [19] and it is in fact one of the necessary
steps in Mie theory [7].

In the context of the radiative correction to the electrostatics
approximation, it is interesting to write explicitly these
expressions. If we consider a general external electric field
(with sources at infinity), which is defined by an electric
potential ¢i,.(r) solution of Laplace equation, we may expand
it as (the negative sign is chosen for convenience)

Pine(®) = =Y " Youm(6,9), (24)

n,m

where Y,,,(6,¢) are normalized scalar spherical harmonics
(see Appendix A). The electrostatic response of a scatterer
(point or body) to this external field can be written as a standard
multipole expansion [3] of the potential created outside the
scatterer as

Ynm 9?
3 G 2200, 25)

dege; rntl
n,m

Pscalr) =

The electric fields can be obtained from the standard relation
E = —V¢. Inthe general case, the induced multipole moments
(represented as a vector q) are linearly related to the excitation
coefficients b by

q = ab. (26)

o is a generalized multipolar static polarizability tensor in
the spherical tensor representation. We note that different
proportionality constants (potentially depending on n,m)
could be introduced in the multipole expansions above and
would affect the definition of e«. In fact, the T-matrix
formulation in the electrostatics limit (k; — 0) is an example
of such an alternative definition. More explicitly, we can obtain
the electrostatics limit for the normalized VSWFs (electric
multipoles only) as

N —

kl‘l—l + 1
Nnm - ! z V(rn Ynm)’
Qn+DNUV =n
- i(2n — D! n Yim
N&® — : \% .
nm k;l-‘rl n—+ 1 rn+1

The electrostatics problem can therefore be recast within the
T-matrix formulation as

Einc = Z bnmNg,l,%,

n,m

Esca = anmN;’;)w

n,m

27)

(28)

with
q="T"b, (29)

where T?? is the electrostatics limit of T?? (it is the bottom right
block of T). Note that T'!, T'?, and T?! involve magnetic
multipoles and are zero in an electrostatics problem.
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Combining all this, we obtain a relation between the matrix
elements of the multipolar static polarizability tensor and the
electrostatics limit of the 7 matrix
2 _ ikt n+1 1

e 2n—DNC2n+ D!

nm - 30
47T€061al (30)

The matrix T?? is therefore simply, up to some proportionality
factors, the multipolar static polarizability tensor. The radiative
correction to the 7 matrix [Eq. (21)] therefore also applies to
any definition of the multipolar polarizability tensors except
for the proportionality constants (and correctly keeping track
of these proportionality constants is the primary difficulty in
writing it out explicitly). We will give specific examples in the
following.

Finally, a similar result can be obtained for the magneto-
statics case in terms of the multipolar magnetic polarizability
tensor B, by substituting o, = €0€1Bum:

T]l _ ik'2n+l n+1i
" 2n—=DN2r+ DY n 4w

Bum- €)Y

B. Electric and magnetic point dipoles

The simplest example of radiative correction is that of a
point polarizable dipole with polarizability tensor a, typically
obtained from a quasistatic (electrostatics) treatment. The
response of such a dipole to an incident field E;, at its position
is defined by the induced dipole moment: p = a¢Ei,.. The T
matrix is here simply proportional to the polarizability tensor
as given by Eq. (30) withn = 1:

T2 — ik}

T bmepe (32)
which is valid both for the approximate 7 matrix T in terms
of &y and the corrected T matrix TRC in terms of &RC. The other
blocks of the T matrix are zero in this case. Moreover, T© is
of order k; and we therefore have K©® = —iT® [Eq. (22)].
We note that for any physical polarizability tensor, e¢ should
be Hermitian if there is no absorption and a dissipative matrix
if there is absorption [in a diagonal basis with eigenvalues
«;, this is equivalent to ¢; real, or Im(e;) > 0, respectively].
K© therefore satisfies the energy-conservation conditions
[Eq. (16)]. We can therefore rewrite Eq. (21) in terms of a
to obtain the expression for the radiative correction as

ki

@)™ = (@)™ —i
6mepe;

I, (33)

which is the same as Eq. (2) previously obtained heuristically
for an isotropic polarizability tensor. The expression above in
fact extends it to the case of a general polarizability tensor.
Moreover, the argument remains valid for a body scatterer,
when considering only the electric dipolar response. This,
for example, justifies the empirical use of such a radiative
correction for spheroidal particles [10,46]. Note that in general
o depends on the frequency w, and the causality condition [8]
for aRC cannot be easily assessed by inspection of Eq. (33)
only. We speculate that, based on the arguments in Ref. [43],
the fact that K and its approximation are dissipative will
automatically enforce causality for o®C, but further work
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(outside the scope of this paper) is necessary to investigate
such aspects.

Finally, for a magnetic point dipole, whose response to an
incident magnetic field Hj,. is an induced magnetic dipole
moment m = B,Hj,., we would obtain following a similar
reasoning

3

k
B =By - iél. (34)

C. Electric point quadrupole and higher-order multipoles

It is straightforward to extend the arguments above to
higher-order multipoles. For electric multipoles, we can use
Eq. (30), which relates the multipolar polarizability in the
spherical tensor representation to the 7' matrix. Applying the
general formula (21), we obtain the radiative correction for an

electric multipole of order n as
] k12”+1 n+1
drepey Cn— DN'Q2n+ D! n

(@R = (ap) !

9

(35)

which is the same expression as proposed in Ref. [44] for
spheres. The expression above in fact extends it to the case of
a general polarizability tensor (for example, anisotropic).

D. Point dipoles with magneto-optic coupling

Sersic et al. have recently studied in detail the case of a
magnetoelectric point dipole [17] in the context of metama-
terials and derived an expression for the radiative correction
[Eq. (18) in Ref. [17]] using empirical arguments based on the
optical theorem for this system [45]. This expression appears
immediately similar to our general formula [Eq. (21)] and the
equivalence between the two can be demonstrated providing
the prefactors and units are accounted for carefully, as we now
show explicitly.

Following Ref. [17], the response of the scatterer to
an incident electromagnetic field (Ei,,Hi,) is defined by
the induced electric (p) and magnetic (m) dipole moments
obtained from the most general linear relation

Ein Ein
(m) =)= (o e )i ) 09
m Hinc OHE OHH Hinc

which is here written in rationalized units as in Ref. [17]. e isa
6 x 6 polarizability tensor, compactly written in block-matrix
notation.

To apply our formalism, we rewrite this definition in SI

units as follows:
ST SI
( |Y ) — OLSI < Einc ) (37)
m®! H}. )

Zogy
! , (38)
EO_GI“HH

where Z = /1to/(ep€1) = 1/(€oc/€1) is the impedance of the

embedding medium (with relative dielectric constant €, ).
Using the arguments of Sec. V A, we may express each

block matrix of the polarizability tensor in terms of a block

with [47]

SI OFEE
o” = 4mwepe; )

eoelzaHE
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matrix [defined in Eq. (6)] of the T matrix for n = 1 (dipole
terms). For example, using Eqs. (30) and (31) withn = 1, we
obtain

ik 2
T2, = L o3 = Zikagg,
n=1 6mever EE 3’ 1%EE 39
11 ik? SI .13
Tn:l = a(XHH = 51/(10(;”.1.

For magnetoelectric coupling, the arguments of Sec. V A can
be applied by noticing that to change from E to H one may
make the substitution b — (—i/Z)a for the incident field and
q — (—i/Z)p for the scattered field. We then get

ik} —i 2
T21 = 1 _aSI — —lk’;(_laEH)
n= 6 Z EH 3 1 ’
e (40)
12 iky . SI 2.5,
T, = E(ZZ)aEH = glkl(laHE).
These results can be written in more concise form as
2 o io
T:—ikf( i HE). (41)
3 —I0EH OFEE

Following our procedure presented in Sec. IVC, we
therefore obtain from Eq. (21) the radiative-correction formula
for such a magnetoelectric scatterer as

-1 -1
i e\ (e )2
. RC RC il 0 —tak
gy ®gg IWpy  ®pg
(42)
To recast this expression in terms of the original definition
of a, it is necessary to change basis. One may introduce the
unitary matrix W = (] i{) and by left-multiplying by W and
right-multiplying by W', we obtain

@)™ = (ag)”! — %ikfl, (43)

which is the same expression as previously obtained empiri-
cally [Eq. (18) in Ref. [17]].

E. Beyond the electrostatics approximation

As mentioned earlier, our procedure for radiative correction
can be applied to other types of approximations, for example,
beyond the electrostatic approximation. As an illustration, we
will here study in detail the case of a spherical scatterer, for
which exact results can be obtained from Mie theory [7]. In
this case, the P, Q, U, K, and T matrices are diagonal and
independent of m, and the only nonzero terms are

Py = Aplsyn ()Y, (sx) — ¥y (x) ¢ (sx)],

O = Auls&n () (sx) — & () (sx)],

Uny = Aul$ X ()Y (%) = o (X)W (52)],

Pyt = Au[Wn ()Y, (sx) — s¥ ()Y (sx)],  (44)
02 = AlE, (1) (sx) — SE () (s)],

Uz = AW (sx) — 5 X0 (X)W ()],

Ty = =P/ O Ky = Pon/ U,

nn nn’ nn nn’
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where

.n(n+1)
L,
s
x = kja (with a the radius of the sphere), and s = ,/€;/ /€] is
the relative refractive index. The functions v, (x), x,(x), and

&,(x) are the Riccati-Bessel functions [7] defined in terms of
the spherical Bessel and Hankel functions as

1pn(x) = xjn(x)a Xn(x) = Xyn(x)’
£,(x) = xhV(x) = Y (x) + i xa (). (46)

A, = (45)

This is consistent with standard approaches to Mie theory
since

qnm = Anbnm ’ (47)

Pnm = (7 -

where T, = T}l = —P!'/Ql! and A, = T2 = —P2/02

nn

are the magnetic and electric Mie susceptibilities

Y)Y, (sx) — ¥ () Ya(sx)
$E, ()Y (sx) — EL(X) P (sx)
_ U@, (%) = 59, () Pa(sx)
! £,V (sx) — 5E(X)Yu(sx) |
The extinction, scattering, and absorption coefficients (i.e.,

cross sections normalized to the geometrical cross section) can
be obtained from these as

Fn =
(48)

2
Qe = =5 D21+ DIRe(y) + Re(A,)],
2
Quea = 5 ) @0+ DI +]4,], (49)

2
Oabs = Oext — Osca = _; Z(zn + 1)

x [ITaPRe(1 4+ T;") + [A,*Re(1 + A )] .
Energy conservation Qext = Qsca + Qubs With Qups > 0 then
requires that [40]

1+Re(a,') <0, (50)

with the equality holding for nonabsorbing spheres (for which
s is real). Note that this condition is simply Eq. (10) in
the special case of spherical scatterers. In terms of the K
matrix, it takes a simpler form Im(K') > 0, where K!i is
up to a sign the same as I', and A, upon substitution of

&1(x) by Xn(x).

There have been many attempts to find suitable small-
argument expansions of the Mie susceptibilities [5,9,10,48,
49], notably in the context of plasmonics for the study of
localized surface plasmon resonances (LSPR) in metallic
nanospheres, where |s| may be relatively large. The main
dipolar LSPR is determined by A; and its resonant character
is evident in the wavelength dependence of the far-field
properties, which are then given by

6 6
Oext ¥ —;Re(Al), Osca ;IAH . (51)
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The lowest-order approximation to Aj is

2i s —1
AP == 3, 52
! 352+ 2" (52)
which is simply equivalent to the electrostatics

approximation [7].

However, as illustrated in Fig. 1 for a silver nanosphere
immersed in water, this approximation is only valid up to
very small sizes of &~ 5 nm for metallic spheres, and in fact
predicts a negative absorption as x increases. Moreover, since
the electrostatics approximation is size independent, it does
not predict the red-shift and broadening of the LSPR as the
size increases. The radiative correction to this dipolar polariz-
ability as given in Eq. (2) was in fact originally introduced
empirically to remedy this problem [5]. It can be simply
expressed as

(A7) = (a?) T -1 (53)

and is another example of an application of our general
formula (21). However, as shown in Fig. 1, the improvement
is marginal and not quantitative. It corrects the problem of
negative absorption as expected, and predicts the strength of
the resonance and its broadening, but not the size-induced
red-shift.

Higher-order expansions, up to third relative order, have
been proposed, notably [49]

- 567+ D+ 0(h

1= 5546 +10) - AP + 0

©
Al = Al 54)

In this expression, the numerator and denominator have been
expanded to third order (relative to lowest order). As shown
in Fig. 1, this significantly increases the range of validity of
the approximation, up to a &~ 20-30 nm. For larger sizes,
however, although Eq. (54) predicts the correct red-shift, it
fails to predict the correct magnitude of the resonance. This
can be attributed to the fact that A does not strictly satisfy
the energy-conservation condition for the 7' matrix [Eq. (10)],
equivalent to Eq. (50) here.

The K-matrix formalism here provides a simple method
to address this issue and improve upon this approxima-
tion. Instead of approximating directly the 7 matrix (A; =
—P22/0%), we therefore use an approximation of the K
matrix, which considering only the electric dipole term is
simply K| = P#/U;?. Expanding the numerator P7 and
denominator U7 as before, we have

1= 56>+ 1)+ 0(h

1 — 25124 10) + O(x%)

(55)

Kt =—inl

It is already apparent that the use of the K matrix provides
simpler expansions, as the denominator U7} now has a well-
defined parity as opposed to Qﬁ [this is because x,(x) is
odd or even, while &,(x) is not]. All odd-order terms in the
denominator therefore disappear (they will in fact reappear as a
result of the radiative correction). K{* also satisfies the energy-
conservation condition [Eq. (16)], at least for sufficiently small
x. In fact, for s real (nonabsorbing sphere), the condition is
strictly satisfied for all x since K{' is then real. We apply the
central formula of this work [Eq. (21)] to derive the radiative
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Lowest-order expansions

PHYSICAL REVIEW A 87, 012504 (2013)

Next-order expansions

a=10nm

a=30nm a=50nm

ext

Extinction, Q

T T
-

\

B /\....Oex‘:14.5 1 /

ext

\ -
Q=76
\

ext

Extinction, Q

sca

Q

Scattering,

Absorption, Q_

]
(¢}
=)
c
1
[}
=
©
3}
(7]
Ry Q,,=18.6
P I
o L J
<
L L J
=
o
£
o
@
-] 3 I \ 4
< v \
7, A
N N L L f I L L L L = f u L L,
380 400 420 380 400 420 380 400 420 400 450 500 550 400 450 500 550

Wavelength (nm) Wavelength (nm)

Wavelength (nm)

Wavelength (nm) Wavelength (nm)

FIG. 1. (Color online) Predictions of the dipolar localized surface plasmon resonance for a silver nanosphere in water, as evidenced by
the wavelength dependence of the far-field properties: extinction (Qex), scattering (Qsc,), and absorption (Q,ps = Qext — Osca)- Only the
dominant electric dipole response (corresponding to A;) was included in these calculations. We compare the exact result [bold (blue) lines]
with approximate results for increasing sphere size. For the lowest sizes (radii of a = 5, 10, and 20 nm, we compare with the predictions of
the electrostatics approximation (ESA) from Eq. (52) [red (dashed) lines] and those of the radiative correction to the ESA from Eq. (53) [green
(solid) lines]. For larger sizes, we compare to the higher-order expansion approximations using A# from Eq. (54) [pink (dashed) lines] and its
proposed radiatively corrected version Af‘RC from Eq. (56) [dark cyan (solid) lines]. Note that these higher-order expansions are accurate for
a < 20 nm (their predictions would lie on top of the exact results). In all cases, the vertical scale has been adjusted for best visualization of the
quality of the approximation and the zero corresponds to the x axis (except in the two cases where the hatched area indicates the negative region).

correction to the approximated K f‘ and obtain

_ -1 x2 s2—1
AD 1— 262+ 1)

This expression differs from the earlier expression [Eq. (54)]
only by terms of relative order x* or larger. However, because
it was derived from the K -matrix formalism, it should be more
physically valid, especially in resonant systems where energy
conservation is crucial. This is indeed the case, as it correctly
predicts the LSP resonance behavior better than the previous
approach based on a direct expansion of Af, in fact up to
a ~ 50 nm as shown in Fig. 1.

VI. CONCLUSION

In conclusion, we have shown that the K matrix provides
a simple formalism to study general radiative correction
problems in EM scattering. This was demonstrated in this
work on two fronts. First, from an abstract point of view, we
studied and highlighted the formal properties of the K matrix,

in particular with regard to energy-conservation constraints.
And second, from a practical point of view, we showed
that previously published radiative-correction formulas are a
straightforward consequence of the K -matrix formalism when
applying the method described in this work, namely, rather
than obtaining approximations of the 7" matrix, it is beneficial
to derive it from an approximate K matrix using Egs. (15)
and (21). We expect that other systems will now be able to be
studied following the same procedure. In addition, we believe
that the K -matrix formulation will play an important role in the
general T-matrix approach to EM scattering. For example, as
briefly mentioned in the text and in Appendix C, it provides an
alternative route to numerical implementations of the 7"-matrix
method, which may be more suited in some situations (for
example, for nonabsorbing scatterers).
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APPENDIX A: VSWF DEFINITIONS

The four types of VSWFs (j = 1,2,3,4) are defined using
the same convention as Ref. [19] as follows:

nm?

. . . 1 .
M{) = vV x (ryl))), NY) = =V x MY, (A
1

. 1 .
(Note that MY) = =V x ij,,i),
1

where

an(n+1) (n +m)!

is a normalization constant and
Yi(r.0.¢) = 23 (kr) P [cos(0)] €? (A3)

are solutions of the scalar Helmholtz equation (with wave
vector k) in spherical coordinates. sz ) are spherical Bessel
functions, the choice of which defines the type of VSWFs
(characterized by the superscript j):

(i) z("' = j,,i.e., spherical Bessel function of the first kind,

for the regular VSWFs: j,(x) = x"/(2n + 1)!! is regular at
xX—

the origin.
(ii) z? = y,, i.e., spherical Bessel function of the second
kind, for irregular VSWFs: y,(x) ~ —@2n — Dx™"1 s

irregular at the origin.

(i) z® = h" = j, +iy,, i.e., spherical Hankel function
of the first kind, for outgoing spherical wave VSWFs:
hP(x) s —(@i)"e /x.

(iv) z¥ = h® = j, —iy,, i.e., spherical Hankel function
of the second kind, for ingoing spherical wave VSWFs:
h;z)(x) X:OO i”+le_ix/x.

The associated Legendre functions P"[cos(8)] are here
defined with the Condon-Shortley phase, i.e., as

dWl
Pl ) = (=D)"(1 = x*)"2 —— Py (x), (A4)
dxm
where P,(x) are the Legendre polynomials.

Note that in terms of normalized scalar spherical harmonics
Ynm(eyfp) [3], we have

Vam W (r,0,0) = 2P r)Yum(0,8).  (AS)

1
Jnn+1)

APPENDIX B: ENERGY-CONSERVATION CONDITION
FOR ABSORBING SCATTERERS

As mentioned in the main text, for absorbing particles, the
inequality 0.y > 0y, requires that I — SS be a Hermitian
positive-semidefinite matrix (HPSD) [19]. In terms of the
T matrix itself, this results in the somewhat cumbersome
condition that the matrix —[T + T 4 2T*T]is HPSD. A much
simpler condition is obtained in terms of the K matrix by

PHYSICAL REVIEW A 87, 012504 (2013)

noticing that (assuming K and T are invertible)

I-SfS HPSD,
& K'[I - STSIK HPSD,
& —KITId+T)+ T+ THTIK HPSD,
& —K'Tf(—iT) — GTHTK HPSD, @D
& TKN — iK]T HPSD,
& iK' —iK] HPSD.

The condition for the K matrix is therefore that [[K' — iK]
is Hermitian positive semidefinite or, equivalently, that K is a
dissipative matrix [41]. Note that the same proof can easily be
adapted to prove the special case that S unitary is equivalent
to K Hermitian.

APPENDIX C: COMPUTING THE K MATRIX WITH THE
EXTENDED BOUNDARY CONDITION METHOD (EBCM)

One of the most common approaches to calculating the
T matrix in practice is the extended boundary condition
method (EBCM) or null-field method [19,21,22,24]. Within
this approach, T can be conveniently obtained from T =
—PQ~! [Eq. (8)], where the matrix elements of P and Q can
be expressed analytically as surface integrals over the particle
surface. Substituting this into Eq. (13) and right-multiplying
by Q, we obtain K(Q — P) = iP. This leads us to introduce
the matrix U such that Q = P 4 iU and we then have

K=PU " (CI)

In addition, the matrix elements of Q and P have identical
analytical expressions except for the substitution of M (k;r)
for Q by Mf})(klr) for P. The matrix elements of U can
therefore simply be obtained using the same expressions
but now with M? (k;r) [this follows from Q = P + iU and
MP(kir) = MV (kir) + iMP (ki 1)]. Equivalently, U can be
computed like Q, simply substituting spherical Hankel func-
tions of the first kind, 2(V(x) = j,(x) + iy,(x), by irregular
spherical Bessel functions y, (x). As a result, within the EBCM
approach, K can be calculated as simply as T, if not more
simply. The same conclusion could have been obtained by
direct comparison of Egs. (4) and (5) for T with the equivalent
expressions (17) and (18).

In addition, it is interesting to note that the energy-
conservation condition for lossless scatterers is equivalent
within the EBCM to

U'P = PIU. (C2)

Defining Y = U'P, this is also equivalent to Y Hermitian. In
the general case of absorbing scatterers, the condition that K
be a dissipative matrix is also equivalent to Y dissipative. K
can then be obtained from the following expression:

K = PY 'Pf, (C3)

which automatically implies that K is Hermitian (dissipative)
if Y is Hermitian (dissipative). These observations allow one to
check (and even enforce) the energy-conservation condition on
Y (for example, as a function of truncation) before carrying out
any matrix inversion. We believe that such an approach may
also be further developed to improve the numerical stability
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of the T-matrix approach, which is a common issue in EBCM
implementations [50-52].

APPENDIX D: EQUIVALENCE OF OPTICAL
RECIPROCITY AND ENERGY-CONSERVATION
CONDITIONS ON K

We here restrict ourselves to nonabsorbing scatterers. In
order to highlight the central idea without being hampered by
technicalities, it is enlightening to first consider the somewhat
artificial case involving electric multipoles only, i.e., only the
block T?? of the T matrix, and the case of a scatterer with
symmetry of revolution (for which different values of m are
decoupled). In this case, optical reciprocity is equivalent to K
symmetric, whereas energy conservation is equivalent to K??
Hermitian. For nonabsorbing scatterers, the matrix elements
of P?? and U?? are pure imaginary numbers and therefore
K?2 is by construction a real matrix [from Eq. (C1)]. The
conditions for optical reciprocity (K??> symmetric) and energy
conservation (K?? Hermitian) then become trivially equivalent.
We note that this equivalence is not obvious when considering
the T matrix as opposed to the K matrix.

This argument can in fact be generalized to the full K
matrix for a scatterer of arbitrary shape. The optical reciprocity
condition then takes the form

Kri{m,n’,m’ = (_1)m+m,Ki/l,—m’,n,—m’ (Dl)
which is deduced from an identical relation for T [Ref. [19],

Eq. (5.34)].

In the framework of the EBCM approach, K is computed
from K = PU™!, where the matrix elements of P and U are
given by surface integrals involving cross products of M,

PHYSICAL REVIEW A 87, 012504 (2013)

NDO, M®, M®, for example,

Tomwt o = —i(=1)" / dsn-[M{, xM",]. (D2)
S

Moreover, in a nonabsorbing medium (with wave vector k
real), we have
M, (k) = (= 1)" (M), (kr))* (D3)

along with identical relations relating to N, M@, and N®.
For an integral like the one given above, we therefore have

(Jrl,111,n’,m/)>’< = _(_ 1)erm,Jn,—m,n’,—m’- (D4)

By inspection of the integrals for the matrix elements of P
and U (Ref. [19], p. 145), we therefore deduce that

(P;Afln,n’,m’)* = _(_l)m+m/ Pri{—m,n’,—m/ (DS)
and
(Uli{m,n’,m’)* = —(—l)m+m/U;{7m’n,’7m,_ (D6)

By carrying out explicitly the block inversion of U and block-
matrix multiplication of PU™!, one may then show that
(KD )" = (17 K

n,m,n’,m’ n,—m,n’,—m’

(D7)
Using this expression (only valid for nonabsorbing scatterers),
it is clear that the optical reciprocity condition [Eq. (D1)] is
equivalent to

(erilj,lm,n/,m/)>k = Kr{’i,m’,n,m’ (DS)
which is exactly the condition for energy conservation K =
K.
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