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Mode structure and ray dynamics of a parabolic dome microcavity
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We consider the wave and ray dynamics of an electromagnetic field in a parabolic dome microcavity. The
structure of the fundamentals wave involves a main lobe in which the electromagnetic field is confined around
the focal point in an effective volume of the order of a cubic wavelength, while modes with finite angular
momentum have a structure that avoids the focal area and have correspondingly larger effective volumes. The
ray dynamics indicate that the fundamentals wave is robust with respect to small geometrical deformations of
the cavity, while the higher order modes are unstable, giving rise to optical chaos. We discuss the incidence of
these results on the modification of the spontaneous emission dynamics of an emitter placed in such a parabolic
dome microcavity.

PACS number~s!: 42.25.2p, 42.55.Sa, 05.45.Mt, 05.45.Ac
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I. INTRODUCTION

The miniaturization of optoelectronic devices such
light-emitting diodes or semiconductor lasers is expected
lead to an improvement of their energy efficiency, and t
lowering of the lasing threshold. This tendency toward m
iaturization has led to the exploration of optical microca
ties whose dimensions are of the order of a few waveleng
@1#. In such microcavities the extreme confinement of
electromagnetic field modifies the interaction of the act
medium with the radiation field, so that the process of sp
taneous emission is altered both in its spatial and dynam
characteristics. Spontaneous emission can thus be redire
enhanced, or inhibited in a way that may be exploited for
operation of light-emitting diodes or lasers. A modificatio
of the characteristics of spontaneous emission, such a
directionality or the emission rate, was shown for seve
microcavity designs such as for the traditional Fabry-Pe
planar cavities@2# and for disk-shaped@3# or spherical@4#
cavities displaying whispering gallery modes.

One of the key requirements for enhancing the dynam
of spontaneous emission and reducing the laser thresho
that the electromagnetic field at the site of the emitting
pole should be enhanced inside the cavity with respect to
value in free space. A class of resonators for which this
be achieved very efficiently is that of confocal cavities:
few experiments with spherical confocal cavities@5#, or
semiconfocal microcavities@6# were reported already, in
which significant spontaneous emission modification or
tremely low laser thresholds were observed. Among the
ferent designs of concave mirrors,parabolicmirrors have an
important advantage in that their focal point displays
astigmatism, and is free from spherical aberrations. Ba
geometric optics thus leads us to expect that dou
parabolic confocal cavities or planoparabolic semiconfo
cavities should display a strong enhancement of the elec
magnetic field in the vicinity of the focal point, and a co
comitant modification of the emission characteristics of
active medium placed there.
PRE 621063-651X/2000/62~6!/8677~23!/$15.00
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This paper presents a theoretical analysis of microcavi
formed by a parabolic mirror at or close to the confoc
condition. The study is motivated by experimental work
which such a system has in fact been fabricated. The exp
mental characterization of the modal structure and dynam
now in progress, will be given in a separate publication@7#.
Here we briefly describe the experimental structure, in or
to define the system for which our model calculations
intended. We have fabricated a semiconfocal planoparab
semiconductor microcavity~see Fig. 1! by etching an appro-
priately prepared GaAs wafer by a focused ion beam@8# to
produce a ‘‘hill’’ of cylindrical symmetry and parabolic ver
tical cross section having a diameter of 7.2mm and a height
of 1.8mm @corresponding to optical lengths of 27l and
6.75l respectively, for a wavelength~in vacuo! of 960 nm#
which was subsequently covered with a thin metallic layer

FIG. 1. Atomic force microscope image of a ‘‘hill’’ of diamete
7.2mm and a parabolic cross section of height 1.8mm, etched on a
GaAs substrate by a focused ion beam apparatus. When cov
with gold this constitutes a concave parabolic mirror, with its foc
point inside the GaAs substrate.
8677 ©2000 The American Physical Society



ol
he
od
ty
i

of
te
v
io
ct
lic
s
el
b
ic
th

an
m
a
ra
se
vit
on
n
tu

s

lic
x
e
b

tic
t
-
n

he
a

ue
lu
s
rt
a
uc

t
re

an
ec-
olic
the
ich

we
dal
n a
lity
so-
rns
tab-
the
ven
he
this

the
avi-
ec-
s,

ction
ns
ill
. V
s in
i-
p-

e-
y
ht
b-
ure
s

the

cal
lic

her
cal

al

di-
p-
tion

ol
na
vit
e

8678 PRE 62JENS U. NÖCKEL et al.
gold. This gold dome constituted thus a concave parab
mirror with its focal point inside the GaAs substrate. At t
base of the parabolic hill, the wafer had a six-peri
GaAs/AlAs Bragg mirror, closing the semiconfocal cavi
~see Fig. 2!. This cavity is expected to possess a mode
which the electric field is strongly enhanced in the vicinity
the focal point, so that a localized semiconductor emit
such as a quantum box or quantum well, emitting at a wa
length near 960 nm, will have its spontaneous emiss
greatly enhanced when placed there. The use of a diele
mirror with a lower refractive index rather than a metal
mirror at the focal plane is important because it introduce
boundary condition that requires the tangential electric fi
to be maximal at the focal plane. This condition cannot
fulfilled on a metallic mirror, on which the tangential electr
field should vanish, thus producing a vanishing field at
focal point of the parabola.

In order to understand the operation of such a cavity,
to assess its performance in modifying spontaneous e
sion, in this paper we first examine the modal structure of
ideal confocal double-parabolic, or semiconfocal planopa
bolic, microcavity. We then investigate the stability of the
modes with respect to geometric deformations of the ca
that correspond to deviations from confocality; this conditi
is inevitably violated in a realistic cavity due to fabricatio
defects. The discussion of this case provides a concep
and theoretical background for the experimental analysi
be presented in a subsequent paper.

The calculation of the modal structure of the parabo
dome microresonators cannot be treated within the para
approximation of conventional@9# resonator theory, becaus
of the very large aperture displayed by the parabola and
cause the cavity dimensions are comparable to the op
wavelength. Extensions of the paraxial approximation
highly convergent~or divergent! beams produced by para
bolic mirrors are cumbersome even in macroscopic reso
tors @10#, where the optical axis is long compared with t
wavelength—in microresonators, the latter breaks down
well. However, there are other approximate techniq
which are well suited to the problem we consider. As a va
able tool for simplifying the exact solution of Maxwell’
equations for the cavity modes, we employ a sho
wavelength approximation leading to simple WKB quantiz
tion conditions. The assumption that wavelengths are m
shorter than the relevant cavity dimensions is common
both WKB and paraxial approximations, and it is therefo

FIG. 2. Schematic cross section of a semiconfocal parab
dome cavity, consisting of a parabolic gold mirror and a pla
Bragg mirror placed at the focal plane of the parabola. The ca
spacer is made of GaAs, and the light emitter is a quantum w
placed in the vicinity of the focal plane.
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surprising at first sight that the WKB approach yields
excellent quantitative agreement with the exact cavity sp
trum even for the longest-wavelength modes of the parab
cavity. We show how this arises by discussing in detail
structure of the classical ray dynamics in the resonator wh
makes the WKB approximation possible. As a result,
shall then also be able to assess the stability of the mo
structure with regard to fabrication imperfections, based o
ray analysis for parabolic cavities in cases where confoca
is violated. To characterize the modes of the parabolic re
nator, the internal caustic structure formed by the rays tu
out to be of crucial importance. These considerations es
lish a connection between the the microcavity optics of
paraboloic dome and the field of quantum chaos: e
minute deviations from confocality introduce chaos into t
ray dynamics, and we have to address the significance of
effect for the relevant cavity modes.

The paper is organized as follows: Sec. II, introduces
mathematical model that describes confocal parabolic c
ties, while Sec. III presents the wave equation for the el
tromagnetic field in cylindrical and parabolic coordinate
and discusses its exact vectorial and scalar solutions. Se
IV presents the WKB approximation of the wave equatio
for the parabolic cavity, an approach that in Sec. VI w
permit us to make a connection with ray optics, while Sec
compares the numerical solutions of the wave equation
the parabolic microcavity with those of the WKB approx
mation. Section VI introduces the main concepts of ray o
tics applied to our parabolic cavities with cylindrical symm
try, while Sec. VII analyzes the stability of the ra
trajectories in a parabolic cavity in which there is a slig
deviation from confocality. Section VIII discusses the pro
lem of the finite acceptance angle of Bragg mirrors, a feat
that limits the lifetime of modes in semiconfocal cavitie
bounded by such mirrors. Finally, Sec. IX summarizes
results of this study, and gives its conclusions.

II. MODEL

We consider a model structure for an ideal semiconfo
cavity which is bounded by a metallic concave parabo
mirror on one side and a planar dielectric mirror on the ot
side, placed at the focal plane of the parabola. In cylindri
coordinates (r,z,f), the parabolic mirror is given by

z5 f 2
r2

4 f
, ~1!

wheref is the focal distance of the parabola, while the foc
plane~and the planar mirror! corresponds to

z50. ~2!

It is convenient to describe this cavity in parabolic coor
nates (j,h,f), whose properties are summarized in the A
pendix. For reference, here we reproduce the transforma
to cylindrical coordinates as given in Eq.~A3!:

r5Ajh,
~3!

z5 1
2 ~j2h!.

ic
r
y
ll



mon
en
r is also

PRE 62 8679MODE STRUCTURE AND RAY DYNAMICS OF A . . .
FIG. 3. ~a! Representation of parabolic cylinder coordinates in thez-r plane of a cylindrical coordinate system (z is the vertical axis!.

The third dimension is obtained by rotating the figure aroundẑ by the anglef. PointA is specified byj51.3 f , h50.9 f , andf50. The
focus of all parabolas is at the origin.~b! By unfolding the parabolic dome into a double paraboloid, the boundary conditions on the com
focal plane can be restated as simple parity requirement under reflection at this plane (z50). For TE modes, the electric field must be ev
under this reflection. The unfolded cavity is shown in side view with meridians which make 90° corners at the focal plane. The latte
the equatorial plane of the cavity.
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To illustrate this coordinate system, in Fig. 3~a! we show
how the intersection of the coordinate surfaces define
point A in the planez versusr. Also shown is the cavity
shape itself: the parabolic mirror corresponds to

j52 f , ~4!

and the planar dielectric mirror is at

j5h. ~5!

In an ideal cavity, the parabolic metallic mirror can b
assumed to be lossless, displaying an amplitude reflect
r 521. This produces ap phase change upon reflection
that it corresponds to a boundary condition in which t
tangential electric field vanishes. In parabolic coordina
this can be expressed as

Eh~j52 f !50, Ef~j52 f !50, Bj~j52 f !50. ~6!

Similarly, the planar dielectric mirror can be assumed
have a reflectivity ofr 511, producing no phase chang
upon reflection, so that the tangential magnetic field vanis
on the focal plane of the cavity. In cylindrical coordinate
this can be expressed as

Br~z50!5Bf~z50!50, Ez~z50!50. ~7!

Alternatively, this implies that the tangential electric field
maximum on the focal plane, and is symmetric under refl
tion of the whole cavity at thez50 plane. Thus, instead o
considering this plane as an additional boundary with pr
erties ~7!, one canunfold the cavity across this plane b
reflection, to obtain a confocal double paraboloid shown
Fig. 3~b!. This extended cavity requires only the metal
boundary conditions on its parabolic walls, that is Eq.~6!
and its equivalent, in whichj andh are interchanged. It will
support modes that can be either symmetric or antisymme
under reflection at the focal plane. If we restrict ourselves
modes in whichEr and Ef are symmetric, this subset i
identical to the modes of the original dome with the con
tions of Eqs.~6! and ~7!.

The advantage of considering the unfolded cavity is t
the focal plane as a physical boundary drops out of the
cussion; this will considerably simplify the interpretation
terms of the ray picture later on. Therefore, in the remain
of this paper, we can refer to Fig. 3~b! as our model system
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III. WAVE EQUATION

The electric fieldEW obeys the vectorial wave equation

¹3¹3EW 1me
]2EW

]t2
50 ~8!

under the additional constraint that its divergence must v
ish:

¹•EW 50. ~9!

The boundary conditions and the constraint of zero div
gence imposed on the electromagnetic field in general
lead to a coupling between the various vectorial compone
of the electric and magnetic fields. In simpler geometr
such as cylinders, spheres, or rectangular cavities, a suit
choice of polarizations reduces the problem to finding
eigensolutions of a scalar Helmholtz equation@11#, How-
ever, in our case the three polarizations and the intersec
parabolic surfaces forming the resonator cannot be lab
by the coordinate lines of a single orthogonal coordinate s
tem, as is possible in the textbook systems mentioned.
now discuss the implications of this complication.

A. Vector field components in cylindrical coordinates

After combining Eqs.~8! and ~9! to the wave equation,

¹2EW 2me
]2EW

]t2
50, ~10!

we can take advantage of the cylindrical symmetry of
problem by expressing the wave equation for a tim
harmonic electric field oscillating at frequencyv in cylindri-
cal coordinates (r,z,f), as

¹2Er2
1

r2
Er2

2

r2

]Ef

]f
1mev2Er50, ~11a!

¹2Ef2
1

r2
Er1

2

r2

]Er

]f
1mev2Ef50, ~11b!

¹2Ez1mev2Ez50. ~11c!
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We note that the wave equation couples the radial and a
lar components of the electric field (Er and Ef), while the
equation for the axial componentEz is scalar. One can
achieve a further simplification in this system of equations
follows:

The rotational symmetry around thez axis permits us to
assume af dependence of all components of the field of t
form

Q~r,z!eimf. ~12!

With this ansatz, Eqs.~11a! and ~11b! can be written as

r2@¹21k2#Er2Er52imEf , ~13a!

r2@¹21k2#Ef2Ef522imEr , ~13b!

where k5Amev is the wave number inside the parabo
dome. If the azimuthal quantum numberm50, this reduces
to two identical equations. If, on the other hand,mÞ0, we
can form a suitable linear combination ofEr andEf which
decouples these two equations. Naively settingEf50 would
not achieve this goal, because it forces both field compon
to vanish.

The proper linear combination in which to decouple th
system of differential equations is obtained with the defi
tions

Er[
i

A2
~E12E2!,

~14!

Ef[
1

A2
~E11E2!.

ThenE6 is the solution of the equation

r2@¹21k2#E65~162m!E6 . ~15!

This definition again makes use of the azimuthal symme
of the resonator, which implies that the circular polarizatio
ŝ657 i /A2(r̂6 i f̂) are decoupled in the cylindrical wav
equation. In this way, we have therefore formally decoup
the original system of equations~11! for the vector field
components. In the special casem50, casesE1 andE2 will
moreover be linearly dependent because their respec
equations again coincide.

However, this decoupling of polarizations in the wa
equation does not reduce the problem to a truly scalar o
because the field components are still coupled by the bou
ary conditions and by the condition of zero divergence.
the ‘‘top’’ parabolic mirror, conditions~6! in terms of the
cylindrical components of the electric field atj52 f now
read

iAf ~E12E2!1AhEz50,

E11E250, ~16!

]

]h
~E11E2!50.
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The first line expresses the conditionEh50, and the second
and third lines representEf50 andBj50, respectively. On
the ‘‘bottom’’ parabolic mirror the boundary conditions a
the same as in Eq.~16!, with j andh interchanged.

B. Absence of longitudinal electromagnetic modes

Unfortunately, the set of boundary conditions@Eqs.~16!#
is not yet a complete list of constraints that we have to s
isfy. An additional requirement is that the field at every po
in the resonator has to have zero divergence, which in p
bolic coordinates reads

E12E21m~E11E2!1
2jh

j1h S ]

]j
1

]

]h D ~E12E2!

1
2iA2jh

j1h S j
]

]j
1h

]

]h DEz50. ~17!

This assumption already entered into the derivation of
system of wave equation~10!, from the original Maxwell
equations in the form of Eq.~8!. However, this does no
guarantee that all solutions of Eqs.~10! or ~11! satisfy Eq.
~17!. The latter is just the well-known statement that t
electromagnetic field is purelytransverse, ruling out longitu-
dinal modes: the transverse electric fieldEW' is related to the
curl of the magnetic field by the Maxwell equation

¹3BW 5
1

c

]BW

]t
5 ikEW', ~18!

and hence satisfies¹•EW'50; the longitudinal fieldEW i ,
which can be written as the gradient of a potentialF, is
responsible for violations of Eq.~17!.

In view of the constraints imposed by the boundary co
ditions ~16! and by the zero divergence condition~17! it is
not possible~except for the casem50, as we shall see later!
to set one~or two! of the vector components to zero witho
setting the full electric field identically to zero, and thus it
not possible to reduce in a rigorous manner the vector pr
lem into a scalar one. The problem can in principle be solv
by converting Eq.~17! from a condition in the cavityvolume
to a boundary conditionwhich can then be treated on th
same footing as Eqs.~16!. One way of achieving this@12# is
by noting that if

EW 0[EW'1EW i ~19!

fulfills Eq. ~10!, then so does

EW [k2¹3¹3EW 05k2¹3¹3EW' . ~20!

The latter is automatically divergence free. In order forEW to
satisfy the boundary conditionEW t50, we require forEW 0 that

~EW 0! t50 and ¹•EW 050 ~21!

on the surface. Then one indeed has

EW t5k2~¹3¹3EW 0! t5k2
„EW 01¹~¹•EW 0!…t5k2~EW 0! t50

~22!
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on the boundary. The problem is therefore reduced to find
the auxiliary fieldEW 0 and then deducing the transverse fie
from Eq. ~21!. This leads to a system of three second-or
differential equations for each vector component ofEW 0,
given by Eq. ~11!, all of which are coupled by boundar
conditions that are, however, quite complex.

The next step is then to write the field components
linear combinations of independent general solutions of
~11!, and determine the unknown coefficients in that exp
sion from the matching conditions at the boundary. The
lution proceeds in an analogous but much less tedious wa
we neglect the additional divergence condition. The imp
tant simplification is that we are then able to consider theE1

and E2 components of the electric field independently,
setting all except for one component to zero. Boundary c
ditions ~16! are then decoupled as well. More precisely,
will be shown that the wave equations are then not o
scalar but alsoseparable, i.e., reducible to the solution o
ordinary differential equations.

We therefore would like to neglect the coupling that r
sults from the condition of zero divergence, provided th
this can be justified in the context of the present study. Th
are various reasons why this approximation will provide
with useful results. Foremost, it will turn out below that th
most important modes we find in this way in fact conspire
satisfy Eq.~17! a posteriori ~cf. Sec. III E!: the modes that
provide the best confinement of the field in a tightly focus
region around the focal point are the ones withm50. For
these, the different vector components decouple rigorou
and the scalar program is exact. Thesem50 modes are par
ticularly significant because they provide the best confi
ment of the field in a tight focal volume. This is the par
mount aim of the experimental dome structure.

In addition to this exact result, the more transparent s
plified problem allows us to evaluate the stability of the s
tionary states of the field in the parabolic cavity with resp
to deviations from the confocality condition—a deformati
that can readily occur in the course fabrication. This will
addressed with the help of the ray picture in Sec. VII, and
ray trajectories themselves are independent of whether a
torial or scalar field is considered. Since the exact nature
the deformation is unknown, it is necessary to make mo
assumptions and parametrize the deformation in some w
Although the range of possible behaviors explored wit
our model can be argued to be generic, we lose at that p
the ability to predict accuratey all the individual modes
the specific sample. The error incurred by this fundame
uncertainty about the precise boundary shape is larger
the error made by adopting the simplified boundary con
tions, and hence the latter are warranted on physical grou

The consistency of these arguments is proven in Sec.
where we find that the only modes whichcan in fact be
reliably predicted for a large range of possible deformatio
~because they are structurally stable against the emergen
chaos! are the ones with lowm ~or angular momentum in the
classical picture!, concentrated strongly near thez axis. For
these modes one can set approximatelym'0, E15E2 and
Ez50, so that Eq.~17! becomes valid.

C. Wave equation in parabolic coordinates

Having discussed the boundary conditions, we now p
vide the solutions to Eq.~15!. In order to find a system o
g

r
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general solutions to the formally scalar differential equ
tions, Eqs.~11c! or ~15!, we express the scalar Laplacia
appearing there in parabolic coordinates (j,h,f), leading to
the form

4

j1h F ]

]j S j
]Q

]j D1
]

]h S h
]Q

]h D G1k2Q5
n2

jh
Q, ~23!

where

n5m11 for Q5E1 ,

n5m21 for Q5E2 , ~24!

n5m for Q5Ez .

Here we have used the fact that the derivative]2/]f2 ap-
pearing in the Laplacian¹2 pulls down a factor2m2 due to
the ansatz@Eq. ~12!#. Although the right-hand side is th
analog of the centrifugal barrier in cylindrical problems,
thus depends not on angular momentumm directly but on a
modified azimuthal mode numbern. This occurs due to the
additionalf derivatives introduced when we transformed t
vector field components to cylindrical coordinates in E
~11!.

At this point we introduce the approximation of discar
ing the divergence condition, so that we merely have to c
sider boundary conditions~16! with one and only one of the
three field components nonzero. Then Eq.~23! is separable
in h and j. We shall return to the details of the solutio
procedure in Sec. IV; for now it is sufficient to give th
result: Denoting the separation constant byb, the solution
can be written in the form

Q5F~k,b,j!F~k,2b,h!, ~25!

whereF(k,b,j) obeys

jF91F81S 2
n2/4

j
1

k2

4
j1b DF50. ~26!

The functionsF(k,b,j) andF(k,2b,h) appearing here are
solutions of this differential equation with the samek andn,
but with sign-reversedb, and hence their functional depen
dence onj andh will be different unlessb50. Without loss
of generality, we can assumen to be non-negative, because
appears in the above equation only asn2. The solutions that
do not diverge atj50 are of the form

F~k,b,j!5eikj/2jn/2M S n11

2
2

ib

k
;n11;2 ikj D ,

~27!

where M (a,b,z) is Kummer’s confluent hypergeometri
function. The functionF as written here is in fact real, be
cause of the Kummer transformation@13#

M S b

2
2a,b,2zD5e2zM S b

2
1a,b,zD , ~28!

where we seta5 ib/k, b5n11 andz5 ikj. Appplying the
theorem then yieldsF(k,b,j)5F(k,b,j)* .
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8682 PRE 62JENS U. NÖCKEL et al.
The separation constantb and the wave numberk at
which to find the mode are still unknowns of the proble
that have to be determined from the boundary conditio
The first constraint we can write down is

F~k,b,2 f ![0 ~29!

to enforce vanishing tangential field on the parabolic surfa
In the two-dimensional plane spanned by the unknownb
and k, this single equation defines a set of curves. T
boundary condition on the focal plane requires thatE6 be
symmetric under reflection, i.e., invariant underj↔h. For
Ez , on the other hand, one needs odd parity. In order
construct such solutions with a well-defined parity, we ha
to form linear combinations

E5F~k,b,j!F~k,2b,h!6F~k,2b,j!F~k,b,h!,
~30!

where, in, addition,

F~k,2b,2 f ![0. ~31!

The set of curves parametrized by this constraint will int
sect the curves defined by Eq.~29! at certain isolatedpoints
in the b-k plane. By finding these intersection points, w
determine the quantized values ofb andk corresponding to
solutions of Eq.~23! which satisfy the boundary conditions
It is not clear at this stage of the discussion how many in
sections there are, or even how the curves defined by e
equation separately will look. Before we analyze the diff
ent branches of these equations and identify their inter
tions based on asymptotic methods in Sec. IV, it is usefu
discuss in more detail the consistency of the fields thus
tained.

D. Behavior at the focal point

The main experimental purpose of the cavity is to conc
trate the field near the focus as much as possible. Since
always hasEz50 there, it remains to discuss the behavior
E6 in the focal region. Because of the ‘‘angular momentu
barrier’’ on the right-hand side of Eq.~23!, the solutionsF
given in Eq.~27! attain a factorjn/2, which suppresses th
field near the originj50 whennÞ0. The Kummer function
itself goes toM51 at j50, so that the only way of obtain
ing a nonvanishing field at the origin is to setn50 in Eq.
~26!. This means that the angular momentum quantum n
ber must in fact satisfym51 for E2 or m521 for E1

according to Eq.~24!. However this leads to a contradiction
if the field is nonzero at the origin, then because of the a
muthal factor exp(6if) one faces a singularity atj5h50 in
which the field is indeterminate. Therefore, there isno pos-
sibility of obtaining a nonzero field precisely at the focus
the cavity.

For m561 there are still solutions of Eq.~23!, but they
must involve solutions of Eq.~23! in suitable linear combi-
nations such as to yield a vanishing field atj5h50. We
have the freedom to combine eigenstates of the wave e
tion linearly at the same wave numberk ~yielding a station-
ary state with monochromatic time dependence!. First we use
the real-valued solutions in Eq.~27! to form a superposition
of the type Eq.~30! with a plus sign. Despite its symmetry
s.
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can also be made to vanish atj5h50, if one or both of the
functionsF(k,b,j) andF(k,2b,h) are zero at the origin.

However although we can find solutions for arbitrarym
with a tangential electric field that is symmetric under refle
tion at the focal plane, we can only attempt to concentr
the field near the focus, always with a node at the foc
point, dictated formÞ0 by the phase singularity at the or
gin. Form50, there is the residual angular momentum b
rier due tonÞ0, and thus even in this simple case—contra
to our expectation from quantum mechanical analog—
‘‘ s-wave’’ solutions have a vanishing field at the focus, a
consequence of the vector nature of the field.

E. Particular case: fundamentals wave

The casem50 can be discussed in more detail becaus
permits simple analytical expressions for the wave soluti
if we specialize further tob50. In this case, the solutions i
Eq. ~27! simplify to

F~k,0,j!}I S n

2
,

i

2
kj D i n/2, ~32!

dropping prefactors that are absorbed in the normalizat
Here I is the modified Bessel function.

As was already noted below Eq.~15!, E6 is linearly de-
pendent in the special casem50, so that we can in particula
chooseE15E2 . Then Er50 and E15E25Ef /A2. We
thus obtain the TE field by setting

Ef5Q5F~k,0,j!F~k,0,h!, ~33!

as in Eq.~25!. This already satisfies the condition of symm
try with respect to the focal plane, without having to form
superposition of the type of Eq.~30!. Moreover, it satisfies
the condition of vanishing divergence, as can be chec
with Eq. ~17!.

With n51 ~for E1 at m50), Eq.~32! can be rewritten to
obtain

EW 55
Ej50

Eh50

Ef5E0

1

kAjh
sin~kj/2!sin~kh/2!

~34!

and

BW 55
Bj52 iE0

Ame

k
A 1

j1h

1

Aj
sin~kj/2!cos~kh/2!

Bh51 iE0

Ame

k
A 1

j1h

1

Ah
cos~kj/2!sin~kh/2!

Bf50.
~35!

The resonance condition is obtained from the bound
condition @Eq. ~6!# on the parabolic dome atj52 f as

kN5N
p

f
, N51,2, . . . . ~36!
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A relatively simple visualization of these modes can
obtained by expressing the electric and magnetic fields
cylindrical and spherical coordinates which are more fam
iar. It can be verified using the relations between these c
dinates to the parabolic variables that Eq.~34! then takes the
form

EW 5H Er50
Ez50

Ef5E0

1

kr
„cos~kz!2cos~kr !…,

~37!

and the corresponding magnetic field is

BW 55
Br5 iE0

Ame

k

1

rr
„z sin~kr !2r sin~kz!…

Bz5 iE0

Ame

k

sin~kr !

r

Bf50.

~38!

By splitting the various terms appearing here into two co
tributions, the electromagnetic field can then be conside
as the superposition of two fields:

The first field is polarized alongEf andBr , and can be
expressed in cylindrical coordinates as

Ef
(1)5

E0

kNr
cos~kNz! and Br

(1)5 iAme
E0

kNr
sin~kNz!

~39!

The second field is polarized in spherical coordinates (r ,f,
u) along the directions of the azimuthal and polar anglesf
andu, according to

Ef
(2)5

E0

sinu

cos~kNr !

kNr
and Bu

(2)5 iAme
E0

sinu

sin~kNr !

kNr
.

~40!

Here we have used the substitutionr5r sinu in the denomi-
nators.

The first field,@Eq. ~39!# corresponds to cylindrical stand
ing waves with a phase variation along thez direction, while
the second field@Eq. ~40!# corresponds to spherical standin
waves with a phase variation along the radial direction. T
configuration is reminiscent of what is expected from
simple geometrical optics argument in which a ray bun
emerging from the focal point can propagate outward a
spherical wave. Upon reflection on the parabola it is c
verted into a cylindrical wave, which in turn can counte
propagate back to the focal point after being reflected o
planar mirror and a second time on a parabola. In an
folded double paraboloid, the ray trajectories are of the t
shown in Fig. 4. It should be noted that these two par
waves are not physical when taken individually, because
both cases the electric field diverges along the axis of
parabola. The divergence, however, cancels out when
superposition of the two partial waves is considered. So
we have only drawn this ray interpretation from a particu
decomposition of the exact solution; the question is how
bitrary this decomposition is, and what we can learn from
in
-
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This will be pursued in Sec. IV. The actual intensity dist
bution of thesen51 states in the cavity will be plotted in
Sec. V B, where we can compare their spatial patterns w
those obtained for largern, in order to justify our claim that
s-wave modes provide the best focusing.

IV. FINDING THE MODES WITHIN THE
SHORT-WAVELENGTH APPROXIMATION

Having seen that even the long-wavenlengths waves in
our cavity can be interpreted as standing waves arising f
counterpropagating ray bundles and their accompany
wave fronts, we now turn to a more quantitative eikon
analysis. Such an analysis can provide accurate star
points for a numerical search of the exact wave solutio
which are determined by finding intersection points betwe
the families of curves~29! and ~31! in the plane ofb vs k.
Such semiclassical considerations, based on the sh
wavelength approximation, are an important first step
cause there are, as we shall see, infinitely many intesect
between the sets of curves determining the exact soluti
and one desires a means of finding them in a systematic w
labeling them by ‘‘quantum numbers,’’ giving the number
nodes in the field along the coordinate lines forj and h.
Beyond this very practical use of the short-wavelength lim
we also want to establish a physical understanding of
resonator modes that allows us to predict how they dep
on changes in the cavity shape. This aspect of the ray pic
will be expounded upon in Sec. VIII

A. WKB approximation and effective potential

The equation to be solved is Eq.~26!, an ordinary second-
order differential equation, where the angular momentumm
enters as a parameter trough the constantn. We are looking
for solutions F(j) which satisfy the boundary conditio
F(2 f )50 and are not singular atj50. The standard short
wavelength approach to be employed here is the WKB
proximation @14#. After division by j, Eq. ~26! takes the
form

d2f

dj2
1

1

j

d f

dj
1

1

4 S k21
4b

j
2

n2

j2D f ~j!50. ~41!

For subsequent analysis it is convenient to introduce a
mensionless coordinate

FIG. 4. Cross-sectional view of the unfolded cavity with tw
closed, bowtie-shaped ray paths going through the common fo
of the bounding parabolas. Families of such rays can be though
as constituents of thes wave in Eq.~34!.
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u5Ak j. ~42!

Dividing Eq. ~41! by k2, and defining a rescaled separati
constant

Z[
4 b

k
, ~43!

the following equation is obtained:

2
d2f

du2
2

1

u

d f

du
1

1

4 S n2

u2
2u2D f ~u!5Z f~u!. ~44!

This has a form similar to the one-dimensional Sch¨-
dinger equation of quantum mechanics, except for the
u-derivative which makes the kinetic energy operator n
self-adjoint. This term appears in the radial equation of
lindrically symmetric problems, but does not affect the a
plicability of the WKB approximation@15#.

The WKB solution requires us to find the classical turni
points in the potential appearing in this equation, withZ
playing the role of the total energy. This effective potenti

V~u!5
1

4 S n2

u2
2u2D ~45!

is a superposition of an inverted parabola and the centrifu
potential determined byn, giving rise to the solid line in Fig.
5. Using this together with the ansatz

f ~u!'
1

p~u!
ei *p(u)du, p~u!5AZ2V~u!, ~46!

approximate solutions are found by imposing the bound
conditions at the turning points.

There is only one possible turning point corresponding
the closest approach to the originu50, which is given by

V~u0!5Z⇒u05AAn21
Z2

4
2

Z

2
. ~47!

FIG. 5. Solid curve: the effective potentialV(u) for n53,
showing the classical turning pointsu0 (v0) whereZ (2Z) inter-
sects the effective potentialV ~cf. the dashed lines!. The ranges of
classically allowed motion for the two degrees of freedomu andv
with energiesZ and2Z are indicated by the shaded bars~dark for
u, light for v). The outer turning points atu, v5A2k f act as a hard
wall whose position depends onk.
st
-
-
-

al

y

o

If Z.0 andn50, then no inner turning point exists. Th
inner turning point, in classical mechanics, is the point wh
the momentum in thex direction smoothly goes through zer
as it changes sign, and hence the probability per unit time
finding the particle becomes infinite. In the ray dynami
this phenomenon gives rise to acaustic. This will be dis-
cussed further in Sec. VI.

The outer turning point of this classical picture is dete
mined by the Dirichlet boundary condition at the parabo
mirror, which in the new coordinate is located at

j152 f⇒u15A2 k f . ~48!

It is the boundary conditionf (u1)5 f (A2 k f)50 in which
the short-wavelength condition is contained: we assume
at the outer boundary the wave function has the WKB fo
@Eq. ~46!#, which requires that the dimensionlesssize param-
eter satisfies

x[2 k f@1, ~49!

i.e., this additional boundary is far away from the classi
turning pointu0 of the effective potential. All steps discusse
above forf (j) apply analogously to the variableh appearing
in the product ansatzQ @Eq. ~25!#, if we reverse the sign ofZ
everywhere and replaceu by the variable

v5Akh. ~50!

Then the inner turning pointv0 for this second degree o
freedom is obtained as

V~v0!52Z⇒v05AAn21
Z2

4
1

Z

2
. ~51!

The values ofu0 and v0 determine the distance of close
approach to thez axis.

B. Quantization conditions

Under this condition, the semiclassical determination
the eigenfrequencies proceeds by applying the Bo
Sommerfeld quantization to the action integral for one per
of the motion in the effective potential. One round trip co
sists of the path fromu0 to u1 and back tou0. The quantized
action is therefore

J~Z,x;n,n![2E
u0

u1AZ2V~u!du[2pS n1
3

4D . ~52!

The integern50,1 . . . is thenumber of nodes of the wav
function in the potential, and the constant 3/4 takes into
count the phase shifts ofp and p/2 at the outer and inne
turning points, respectively. In other words, the above qu
tization condition is an approximate way of writing th
phase-shift requirements that hold at boundaries and c
tics, using the approximation that the wave propagation its
is described by a wave front whose phase advance inx is
given by the functionJ.

The result of the integration is found to be



It

,
o
b

th

ne

q
b

e
g
in

w

s
a

es
n
c
e

in
in

is-

u

of

as
of
on
q.

ne
e

ne
lot
w
the
ics.
the
ere

on

the

the

q.

PRE 62 8685MODE STRUCTURE AND RAY DYNAMICS OF A . . .
J~Z,x;n,n!5Ax21Z x2n21
Z

2
ln

Ax21Z x2n21x1Z/2

An21Z2/4

2nS arcsin
Z x22n2

xAZ214n2
1

p

2 D
52 p S n1

3

4D . ~53!

This is an equation for the two unknownsZ and x, i.e., for
the rescaled separation constant and size parameter.
therefore analogous to Eq.~29!. The integern uniquely la-
bels all the allowed solutionsf n of Eq. ~44!. This is an im-
portant difference to Eq.~29!: there, the functionF in fact
has infinitely manybranchesthat satisfy the equation, which
however, are not labeled explicitly. The great advantage
Eq. ~53! is that these branches are explicitly enumerated
n, so that fixing this index selects exactly one curve in
Z-x plane instead of an infinte family.

As in Eq. ~25!, the field consists of products of the form

Q5 f n~x,Z,u! f m~x,2Z,v !, ~54!

with v defined as in Eq.~50!. The two functionf n and f m
have their analog in the exact solutionsF of Eq. ~26!, corre-
sponding to the branches ofF labeled byn and m, respec-
tively.

We then form combinations the form of Eq.~30! to en-
force the required symmetry with respect to the focal pla
The semiclassical WKB quantization for the functionf m(x,
2Z,v) provides a second equation of the form of Eq.~53!:

J~2Z,x;n,m!52 p~m1 3
4 !. ~55!

These two quantization conditions play the same role as E
~29! and~31!: the intersections of the curves parametrized
them determine the quantized values ofZ and x. However,
the WKB method affords a great simplification: by fixing th
branchesn and m, the intersection of the two resultin
curves is uniquely determined. To illustrate this situation,
Fig. 6 we show how the lines defined by the above t
equations traverse theZ-x plane. Only a small portion of this
plane is shown, emphasizing the behavior of the semicla
cal results at smallx where their accuracy should be at
minimum. Comparison with the exact families of curv
shows, however, that the WKB results are excellent eve
this long-wavelength limit. Note that, by symmetry, interse
tions occurring atZ50 are always between curves with th
same branch indexn5m. All curves shift to largerx with
increasingn because of the larger centrifugal barrier, push
the classically allowed regions of the effective potential
Fig. 5 outward.

V. EXACT SOLUTION FOR THE MODES AND THEIR
FIELD DISTRIBUTION

Once the allowed combinations ofZ and x—or equiva-
lently b andk—at which the boundary conditions are sat
fied have been found, the problem of finding the modes
solved. For example, we can now plot the intensity distrib
tion of each mode by using the quantized values ofb andk
is

f
y
e

.

s.
y

o

si-

in
-

g

is
-

in Eq. ~27!, and forming the proper linear combinations
the form of Eq.~30!.

A. Mode profiles

This will now be carried out for the lowest-lying modes
obtained from the intersections in Fig. 6. Any given value
n can have a different meaning for the intensity distributi
in the azimuthal direction, depending on which case in E
~24! we choose to consider:n5m61 for the modes. Since
the azimuthal field variation is trivial,}exp(imf), we wish
to restrict our attention to the mode profile in the pla
spanned byr andz in cylindrical coordinates. The variabl
governing this property isn, not m. Therefore,n is used here
to classify the mode profiles.

As in the previous sections, we shall take the focal pla
to be the symmetry plane of a double paraboloid, and p
the wave fields in this unfolded cavity. This is done in vie
of the subsequent discussion, where we shall establish
connection between these modes and the ray dynam
Some wave plots are shown in Figs. 7 and 8. Note that
casen50 does not appear among the solutions listed h
because it corresponds to wave fields that do not vanish

FIG. 6. For the first six values ofn, the graphical solution of the
simultaneous equations~53! and ~55! can be read off from the in-
tersections of the gray curves. The dashed black curves show
analogous graphical solution of Eqs.~29! and ~31!. The exact and
semiclassical curves are almost indistinguishable~except for n
50), attesting to the striking accuracy of the former even at
smallest possible size parametersx. All plots can be continued to
Z.0 by reflecting at the axisZ50. The WKB curves with positive
slope belong to Eq.~55!, and the falling lines are created by E
~53!. They are labeled starting from the leftmost bym,n
50,1,2. . . .
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thez axis and hence are irreconcilable with the finite angu
momentumm561, as discussed in Sec. III D!.

If we look at only the left column of Figs. 7 and 8, it i
apparent that all states withZ50 look similar, as do all
states withZÞ0. A similar observation can be made in th
right columns of the figures. Comparison to the intersect
lines in the graphical solution, Fig. 6, shows that states w
the same nodal pattern indeed result from the crossing o
same pair of lines—labeled by the samem and n, only for
different n which pushes the intersecting lines to higherx.

FIG. 7. Four states withn51. The grayscale indicates the ma
nitude of the electric field for the modes (E6) of the confocal
double paraboloid, and the highest fields are shown in black.
vertical axis isz, and the horizontal axis is the axial distancer.
Increasingx means a shorter wavelength and hence more no
lines~white!. The size parameter is quantized according to Eq.~56!,
with N51 and 2 in the top row, andN57 and 14 at the bottom.

FIG. 8. The modes shown here do not follow the simple law
Eq. ~56!, but were obtained numerically. With increasing centrif
gal barrier, labeled byn, the forbidden region around thez axis
grows outward.
r

g
h
he

However, the interpretation ofm and n as the number of
nodes in the parabolic coordinate directions cannot be
ried through in all of the plots. We will return to this problem
in Sec. V C.

In order to achieve the best possible concentration
fields near the focus, the most promising candidates
modes withn51. Among these, the patterns shown in Fig
indicate that the states atZ50 in turn show the highest in
tensity near the focal plane. These are precisely the fun
mentals waves we discussed in Sec. III E, with the wav
numbers quantized according to Eq.~36!, which for the size
parameter reads

xN52 knf 52 p N. ~56!

This is an exact result which can be compared to the W
quantization condition in Eq.~53!, with Z50 andn51. The
latter actually has a more complicated form,

Ax2211arcsin
1

x
52p~n11!, ~57!

but to second order in the small quantity 1/x this is identical
to Eq. ~56! with N5n11. This confirms the observatio
made in Fig. 6 that the numerical agreement between e
and semiclassical solutions is good even for small quan
numbers.

B. Focussing and the effective mode volume

In order to evaluate the field enhancement that is achie
in the fundamental TE modes discussed in Sec. III E a
shown in Fig. 7, it is necessary to examine the distribution
the electromagnetic energy in that mode. The energy i
parabolic cavity of focal lengthf is

U5
1

4Ej50

j52 f E
h50

h52 f E
f50

f52pS e

2
~ uEju21uEhu21uEfu2!

1
1

2m
~ uBju21uBhu21uBfu2! D j1h

4
dj dh df,

~58!

which for the fundamental (s-wave! TE modes@Eq. ~34!#
gives

U5eE0
2 p f

4k2 E0

k f sin2~x!

x
dx, ~59!

where the value of the integral can be evaluated numerica
For the experimentally realized cavity described in Se

k f514p, so that the value of the integral is 2.527. Th
intensity distribution for this mode is shown at the botto
right of Fig. 7 ~notex52 k f). To examine the energy distri
bution in the cavity, we can evaluate the energy that is c
tained at each lobe of the standing wave of parabolic w
front that corresponds to the mode. We note then that
first lobe, corresponding to a parabolic wave front of foc
length f 15l/2, contains 48% of the total energy; to see th
replace the integration limit in Eq.~59! by p. This lobe

e

al

f
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occupies a physical volume ofV0[pl3/4, whereas the vol-
ume of the overall cavity,V52p f 3, is 2744 times larger.

This underscores the very large confinement of the fi
that occurs in the vicinity of the focal point, and points to t
possibility of observing a very large enhancement of spon
neous emission into this mode. The fraction of the total
ergy contained in the first lobe of course reaches 100% if
smallest possible cavity withk f5p is considered. However
the size achieved in our present sample already approa
the optimal conditions if one takes into account that enhan
ment of spontaneous emission requires not only a smal
fective mode volume but most of all a small local density
states@16#. The averagedensity of modes in an arbitrarily
shaped electromagnetic resonator of volumeV is a funda-
mental quantity in the theory of blackbody radiation and w
derived by Weyl@17#:

rWeyl~k!'
k2

p2
V. ~60!

Note that this can also be written in the physically intuiti
form

rWeyl~k!'
2

3
p2

d

dk S V

V0
D , ~61!

indicating that the number of modes in the intervaldk is
proportional to the number of additional volume quantaV0
that fit into the given volumeV whenk increases tok1dk.
The local density of states in the focal volumeV0 can there-
fore be interpreted to be the same as the total density
states in a small cavity of volumeV5V0. This, in turn, is
roughly the effective mode volume for the fundamentas
wave in our structure. From this we conclude that the sp
taneous emission enhancement should be close to the m
mum possible value even though our cavity is not of
minimum possible size. This is one of the central advanta
we were looking for in the parabolic cavity design. In th
discussion we have assumed for simplicity that theQ factor
of the modes under consideration is fixed, independen
size and quantum numbers. This severe simplification wil
removed in Sec. VIII.

In higher order modes withm.0, the centrifugal barrier
prevents the field from approaching the focal point. This i
plies that these modes will have a larger effective volu
and, correspondingly, a smaller enhancement of the spo
neous emission rate. An added difficulty concerning
higher order modes arises from the limited experimental c
trol over the exact cavity shape. As discussed in Sec.
small deformations of the cavity~modeled as deviation
from confocality! result in chaos, leading to a loss of co
straints on the possible regions of phase space which ca
explored. This further increases the effective volume of th
modes. The enhanced spontaneous emission into the fu
mentals wave implies that this mode will also exhibit a larg
gain and, correspondingly, a low lasing threshold. The p
liminary conclusion of this section is therefore that a mo
with low angular momentum and smallZ ~or b) will be the
dominant mode in a laser of parabolic geometry.
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C. Caustic structure in the wave solutions

In order to arrive at the solutions shown in Fig. 8, w
started from the semiclassical~short-wavelength! approxima-
tion and then refined the quantizedZ andk further by apply-
ing the exact modal conditions. However, the question ar
how the quantum numbersm and n which label the semi-
classical solutions can be visualized in Fig. 8. The answe
that the symmetrization procedure obscures this identifi
tion. What happens can be understood if we ignore the pa
requirement and plot the wave fields in the simple prod
form of Eq. ~25!.

The symmetrization performed according to Eq.~30!,
with A5B, introduces no change whatsoever if the sepa
tion constant isb50. Therefore, the intensity profiles of a
modes withZ50 in Fig. 8 are the same before and aft
symmetrization. However, the wave patterns acquire a qu
tatively different and simpler form if we desymmetrize th
remaining states. This is shown in Fig. 9. The nodal patte
now appear in a regular fashion along the coordinate lines
u andv ~or j andh), and their number along these lines
uniquely determined bym andn.

By symmetrizing a state such as the one shown fon
53, k518.59, andZ522.54 in Fig. 9, the field shown in
the desymmetrized plot is added to its reflection at the fo

FIG. 9. Mode intensities as in Fig. 8, but without performing t
symmetrization prescribed by the focal plane boundary condit
The WKB quantum numbersm ~andn) can be read off by counting
the number of wave function nodes parallel~and perpendicular! to
the reference lineg. Modes in the first three rows correspond to t
symmetrized versions of Fig. 8. In order to illustrate the approac
the short-wavelength limit, additional modes are shown for wh
the formation of caustics is apparent in the high-intensity ridg
~black! bordering the classically forbidden regions~white!.
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8688 PRE 62JENS U. NÖCKEL et al.
plane, thus allowing some nodal lines to be ‘‘filled in,’’ a
seen in the corresponding state at the bottom right of Fig
The desymmetrized waves in Fig. 9 exhibit nodal lines p
cisely along lines ofh5const orj5const. In addition to the
simple nodal structure, we also observe a clear segrega
between regions of negligible intensity and regions of os
latory field, with dividing lines between them that becom
more and more pronounced as the size parameterx52 k f
increases. These are the caustics, which in fact accum
an increasing amount of intensity as the short-wavelen
limit is approached. The caustics follow parabolic coordin
lines as well, as is apparent from the last row of Fig. 9. T
field at n53, x534.16, andZ528.72 is bounded from be
low by a broad inverted parabola, and excluded from thz
axis by a steep upright parabola. The intersection of b
parabolas forms the caustic. In the mode atn54, x573.73,
andZ50, both the upright and inverted bounding parabo
are symmetric as we expect forZ50.

VI. CAUSTIC STRUCTURE IN THE RAY PICTURE

In this section we will elaborate on the relation betwe
mode structure and ray dynamics, as a basis on which we
predict the effect of shape perturbations on the mode st
ture. The caustic patterns revealed in Sec. V, by the dec
position into the product states as in Eq.~25!, are a direct
consequence of the classical turning points in the effec
potential V, @Eq. ~45!#, for the motion along thej and h
directions. The distinction between classically allowed a
forbidden regions gives rise to the regions of oscillatory a
vanishing fields in Fig. 9. The effective potential has, so f
been discussed only as an auxiliary concept that proved
venient in the WKB treatment; its relation to the behavior
the rays of geometric optics is, however, well known. For
sake of a self-contained presentation, here we convey
idea behind the general eikonal theory by showing how
derive ray equations from the one-dimensional separa
wave equations,@Eq. ~26!#. The argument is nonstandard
the sense that Eq.~26! is based on the full vectorial wav
equation~i.e., with polarization!, and we therefore shall find
that for a given angular momentumm, slightly different ray
trajectories have to be considered depending on polariza
This is because the quantity entering Eq.~26! is n, not m.

A. Ray equations from the WKB approximation

Inserting the WKB ansatz,@Eq. ~46!# into the wave equa-
tion for the separated variables@Eq. ~26!#, one finds to lead-
ing semiclassical order thatp must satisfy the equation

pu
21V~u!5Z or ~similarly! pv

21V~v !52Z. ~62!

We can interpret this as the Hamiltonians of two decoup
linear systems, and add them to obtain the Hamiltonian
the combined system:

H̃5pu
21pv

21V~u!1V~v !. ~63!

The trajectories we are looking for then satisfy the equat
H̃(pu ,pv ,u,v)5Z2Z50, or written out:
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pu
21pv

21
1

4 S n2

u2
1

n2

v2
2u22v2D 50. ~64!

If we divide this by (u21v2), the result is

pu
21pv

2

u21v2
1

1

4 S n2

u2v2
21D 50; ~65!

this can also be interpreted as arising from anew Hamil-
tonian

H[
pu

21pv
2

u21v2
1

1

4

n2

u2v2
, ~66!

by requiring

H~pu ,pv ,u,v !5 1
4 . ~67!

The Hamiltonian in this form is analogous to the wave eq
tion in parabolic coordinates@Eq. ~23!#, where the Laplacian
is divided by the same scale factor (u21v2) that accompa-
nies the conjugate momenta here. One can now use Ha
ton’s equation of motion to replace momenta by ‘‘veloc
ties,’’ the definition being

u̇5
]H

]pu
, v̇5

]H

]pv
. ~68!

This leads to the substitution

pu5 1
2 ~u21v2!u̇, pv5 1

2 ~u21v2!v̇, ~69!

which brings Eq.~67! into the form

~u21v2!~ u̇21 v̇2!1
n2

u2v2
51. ~70!

Reverting to cylinder coordinates, the above equation
comes

k2~ ṙ21 ż2!1
n2

k2 r
51. ~71!

Here we used the definitions of the coordinates in Eqs.~3!
and ~42!. To examine what this equation has to do with t
ray dynamics, we now take the ray-picture point of view.

B. Geometric optics in cylindrical coordinates

If we consider the three-dimensional motion of rays in
double paraboloid of the shape in Fig. 3~b!, their propagation
between reflections at the parabolic walls will of course f
low straight lines, and hence there is no place for a
coordinate-dependent potentialV. However, in order to com-
pare the ray dynamics to wave function plots in thez-r
plane, as shown in Fig. 9, we must project the ray mot
onto this plane as well. In the wave analysis, this project
was achieved by using therotational symmetryof the cavity
around thez axis to eliminate the azimuthal coordinatef
from the problem in favor of the angular momentum qua
tum numberm.
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In ray optics, we can do the same: rays can be class
by an angular momentumLz because of the axial symmetry
To see this, we first defineLz . A ray trajectory is a curve
consisting of straight line segments between each reflec
If we parametrize this curve asr ( l ), where l is the path
length along the ray from some arbitrary starting point, th
u ṙ ( l )u51. Here and in the following, the dot represents t
differentiation with respect to arc length,d/dl. In cylinder
coordinatesr, f, andz, we can decompose this as

ṙ5 ṙ er1 ż ez1r ḟ ef . ~72!

Between any two reflections, this is a constant unit vecto
the direction of the ray. With this, the equation for a straig
line segment can be written, in general, as

r3 ṙ[L , ~73!

whereL is a constant analogous to the angular momentum
classical mechanics.

Because of the rotational symmetry around thez axis, the
azimuthal unit vectoref at the point of reflection is alway
tangent to the surface. Therefore, a reflection does
change the component ofṙ alongef , so thatrḟ is continu-
ous. Since the ray curve is itself continuous everywhere
is r( l ). Hence the quantity

Lz[r2ḟ ~74!

is also continuous at each reflection. But this is just thz
component ofL in Eq. ~73!, as can be verified by performin
the cross product there. ThusLz is a constant between reflec
tions, which together with its overall continuity implies th
it is a conserved quantity for the whole ray trajectory.

Using Eq.~74!, the fact thatṙ is a unit vector@Eq. ~72!#,
can be recast as

ṙ21 ż21
Lz

2

r2
51. ~75!

From the ray approach we have thus obtained an equa
almost identical to Eq.~71!. We only have to redefine th
path length variablel to make it dimensionless, by introduc
ing

s5k l, ~76!

to obtain

dr

dl
5k

dr

ds
, ~77!

for the derivatives, and furthermore interpret

Lz5
n

k
. ~78!

Then Eqs.~71! and~75! become identical, if we interpret th
dot in Eq.~71! to meand/ds. The scale factor of the ‘‘time’’
variable parametrizing our trajectories is irrelevant for t
shape of the paths, so that we can conclude thatthe ray
d

n.

n

n
t

of

ot

o

on

picture introduced here is equivalent to the motion describ
by the WKB effective potential, with the important ident
cation of Eq. (78!.

Besides Eq.~75!, the only other equation that is needed
completely determine any ray trajectory from its initial co
ditions is the law of specular reflection, which can be form
lated with the help of the outward normal unit vectoru at the
reflection point as

ṙ re f lected5 ṙ22 u~u• ṙ !. ~79!

This corresponds to a reversal of the normal component oṙ .
Here we can see explicitly that reflections do not affect
component ofṙ in the direction ofef , since the normalu has
no ef component as a consequence of the axial symmet

This latter fact also means that we can simply drop theef
component from Eq.~79! altogether. Therefore, we now de
fine the two-component vectors in thez-r plane by dropping
the ef components from the corresponding three-compon
vectors. Thusṙ becomes

v[ṙ er1 ż ez[S ṙ

ż
D , ~80!

and, similarly,

u5ur er1uz ez . ~81!

In this two-dimensional space, the specular-reflection con
tion retains the form of Eq.~79!:

vre f lected5v22 u~u•v!. ~82!

This is the reason why we can call the motion in thez-r
plane abilliard problem.

C. Curved ray paths in the centrifugal billiard

We know that the trajectories between reflections
straight lines, so that the components ofṙ in the Cartesian
coordinate frame are constant for each segment. In our
z-r frame of reference, thez axis is the same as the Cartesi
one, so that we still havevz5 ż5const between reflections i
Eq. ~80!. However, the same doesnot hold for ther compo-
nent ofv. Instead, from Eq.~75! we obtain from

ṙ21
Lz

2

r2
512 ż25const. ~83!

If we multiply this by 4r2, it can be written as a differentia
equation forr2:

S d

dl
r2D 2

54 r2 ṙ254 ~12 ż2!r224 Lz
2 . ~84!

The solution is thatr2( l ) describes a shifted parabola,

r2~ l !5r0
212~ l 2 l i !A~12 ż2!r i

22Lz
21~ l 2 l i !

2~12 ż2!,
~85!
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wherer i
2 is the integration constant and specifies the value

r2( l i) at the starting pointl i of the ray. Since, furthermore,z

is a linear function ofl ( ż5const), for definiteness we ca
fix the initial point is to lie on the focal plane, and substitu

l 5 l ~z!5z/ ż ~86!

to find that Eq.~85! describes a curved pathr(z) in the z-r
plane. The curved nature of this trajectory is a direct con
quence of the centrifugal potentialLz

2/r2 in Eq. ~75!, and we
would recover straight lines, i.e., a linear variation ofr( l ),
for Lz50. This is why we refer to this problem as acentrifu-
gal billiard @18#. For a visual example of how curved trac
arise from stright-line trajectories, the reader is referred
Fig. 13~e!, which will be discussed in Sec. VII.

An example of the ray motion in the special caseLz50 is
already displayed in Fig. 4, showing no curved trajector
because there thez-r plane is indistinguishable from th
Cartesianz-x plane. ForLzÞ0, curved ray trajectories in th
z-r plane are shown in Fig. 10 for four different initial con
ditions under which the ray is launched. Note that the para
eter Lz , as given in the plot, has dimensions of length@cf.
Eq. ~75!#. This reduced two-dimensional problem can
analyzed completely without reference to the original thr
dimensional ray tracing, withLz as a parameter that enca
sulates the third degree of freedomf which has been elimi-
nated. We have, broadly speaking, converted to a corota
frame of reference~with rotation speed always matching th
varying angular velocity of the ray!, and thus obtained a
planar problem in which we now look for the classical orbi
The simplification is considerable because the thr
dimensional ray motion in the cavity is rather difficult
visualize, compared to the motion in thez-r plane.

The two periodic orbits in Fig. 10~a! exemplify this situ-
ation: after the trajectory completes one round trip in thez-r
plane, it returns to its initial position with the initia
orientation—but in the original three-dimensional cav

FIG. 10. All starting conditions for the rays in~a!, ~b!, and~c!
amount to the same angular momentumLz50.1f , but prescribe
different angles of incidence with respect to the boundary, and
ferent positions of impact.~a! shows two different orbits in the
same plot; both are periodic and symmetric in this projection o
the z-r plane, differing only in their starting points.~b! shows a
single path, which is quasiperiodic because it does not close
itself even in this projection. Instead, it densely fills a region
space delimited by a caustic whose shape is given by the para
~gray!. The caustic becomes more asymmetric in~c! and ~d!, each
of which shows a quasiperiodic orbit. The angular momentum in~d!
is Lz50.6f , leading to a larger forbidden zone around thez axis.
f
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there has also been a motion inf which does not necessaril
amount to a full rotation around thez axis. Hence this peri-
odic orbit of the centrifugal billiard is not in general a tru
periodic orbit of the parabolic dome@cf. Fig. 13~e!#. How-
ever, we can reverse this statement and conclude that
periodic orbit of the three-dimensional problem must also
periodic in thez-r plane. This cautionary remark concernin
the interpretation of Fig. 10 is relevant if we attempt to i
terpret the actual modes of the original cavity in terms o
naive physical optics approach: one might think that a qu
tized mode has to be associated with ray paths that for
closed loop, and in this way ‘‘reproduce’’ themselves. Ho
ever, a comparison between Figs. 9 and 10 reveals that
odic orbits seem to play no special role for the mode str
ture.

What shapes the modes is not any single periodic
orbit, but the caustics as they appear in Fig. 10~b!–10~d!.
The spatial distribution of the ray trajectories exhibits a cle
correspondence with the modal intensities shown in Fig
particularly in the shape of the caustics. This is most c
vincing for the two examples in the bottom row of Fig.
where the wavelength is shortest: The state atn53, x
534.16, andZ528.72 should be compared to Fig. 10~c!,
and the reflection-symmetric mode withn54, x573.73, and
Z50 finds its counterpart in Fig. 10~d!.

Caustics are immediately generated when we follow
single quasiperiodic orbit, but not so for a periodic on
However, periodic orbits occur in infinite families which
when plotted together, again fill a region of space bound
by a caustic curve. The two members of the family shown
Fig. 10~a! are obtained by launching a ray from the foc
plane, perpendicular to it, differing only in the radial distan
r of the launch. All other siblings of the examples in Fi
10~a!, combined, would create a picture almost identical
the one generated by the single quasiperiodic orbit in F
10~b!—the latter is in fact the result of only a slight deviatio
from the initial conditions chosen in Fig. 10~a!, with the
result that the orbitalmost, but not quite, closes in on itsel
after one round trip, and continues to fall short of closi
itself after each subsequent round trip as well. The conc
sion is that from the point of view of the caustic structure
our system, there is no qualitative difference between p
odic and quasiperiodic orbits.

The fact that all orbits can be characterized by a particu
caustic which they touch, and that moreover all periodic
bits come in infinite families, is a general property ofinte-
grableHamiltonian systems, to which the special centrifug
billiard defined here belongs. That the paraboloid billiard
integrable, can already be concluded from the existence
separation ansatz for the wave equation, which we discus
in Sec. III. However, we have not yet completed our progr
of connecting the ray and wave approaches, and in partic
have not addressed the question of how to determine q
titatively the type of ray trajectories that correspond to
given mode. So far, the correspondence was establishe
visual inspection alone. The quantitative connection is
tained by comparing the ray patterns of Fig. 10 with t
effective potentialV of Eq. ~45!. We shall see that, for an
integrable system, we can in fact uniquely connect a part
lar caustic with a given mode.
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As a final remark concerning the periodic orbits in th
integrable system, it is worth comparing the patterns of F
10~a! and especially Fig. 4 with the ‘‘bowtie laser’’ of Re
@19#. There, a semiconductor cavity was designed in suc
way as to obtain lasing from a bowtie-shaped mode w
highly desirable properties, foremost among them its foc
ing action in the center of the cavity. The focusing patte
of Fig. 4 are very similar, but the main difference is that
our case these orbits occur in families whose members
cross thez50 plane with all possible axial displacementsr.
In the semiconductor cavity, most rays move on chaotic
jectories, and only a small range of initial conditions for t
rays lead to a stable bowtie pattern, leading to modes wh
are strongly concentrated near a unique bowtie path,
hence even less spread out in space than the examples s
in Fig. 7. This leads us to anticipate that the beneficial pr
erties of then51 modes found for our integrable system c
in fact be enhanced if we allow for the possibility of chaos
the ray dynamics.

D. Connection with the effective potential in parabolic
coordinates

The classical turning points for the two degrees of fre
dom u and v in the potential of Eq.~45! determine the pa-
rabolas which describe the caustics in Fig. 10. We note
the caustics~and also the quasiperiodic rays that generate
caustics we show! have a well-defined distance of close
approachr0 with respect to thez axis, given by the corner a
which the two bounding parabolas meet. Describing this
parabolic coordinates, we find thatr0 is approached if bothj
and h simultaneously reach their inner turning points. E
pressing this condition in terms of Eqs.~47! and ~51!, we
obtain the simplesemiclassicalrelation

r05
n

k
. ~87!

Here we have used the coordinate transformationr5Aj h
@cf. Eq. ~3!#, and the definition of the rescaled variables@Eq.
~42!#.

The distance of closest approach for individualperiodic
orbits is not given by this expression, but the minimalr over
the whole family of such orbits does follow this law. Th
caustics in Figs. 10~b!–10~d! exhibit cusp singularities atr0
because, in that extreme point, thez motion has zero veloc
ity: it is clear from Eq. ~75! that the smallestr will be
achieved whenṙ5 ż50. But from the same equation w
immediately obtain that the angular momentum then equ
the axial distance, and with Eq.~87! this reproduces Eq.~78!.
We have therefore established that the ray’s ‘‘angular m
mentum’’ is directly proportional to the modified angul
momentum quantum numbern of the mode under consider
ation. In the semiclassical limit of largek, the difference
betweenn5m61, andm becomes negligible in this expres
sion, so that we recover the intuitively expected proportio
ality

Lz5r0'
m

k
. ~88!
.
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This approximation means that we can neglect the effec
polarization on the ray-wave correspondence in the semic
sical limit—however, we shall make use of this only later,
the ray analysis of Sec. VII. Since we have been intereste
states at rather smallk and in particularn>1, in Fig. 10 we
plot only trajectories withLzÞ0.

A second semiclassical relation follows from Eqs.~47!
and~51! if we ask for the valuez0 of z corresponding to the
point u0 , v0 at which the caustics have their singularitie
The whole caustic is uniquely determined by its singu
point at radial distancer0 and heightz0, cf. Fig. 10. Accord-
ing to Eq.~3!, we obtain

z05
Z

2k
. ~89!

This identifies the meaning of the separation constantZ, also
quantifying the earlier observation that forE50 both the
wave and ray patterns are symmetric with respect to the fo
plane: in this case, the cusp occurs on this mirror plane, a
Fig. 10~b!.

With Eqs. ~78! and ~89!, we have completed the bridg
from the exact wave equation via semiclassical WKB qu
tization to the ray caustics. By specifying the quantizedn, Z,
andk of a given mode, we uniquely determine a caustic, a
with it a particular family of ray paths. Now we can us
additional properties of the ray picture to better understa
the cavity modes. This is especially promising in this syst
because we have seen that the semiclassical approximati
extremely accurate here. The reason for this somewhat
prising accuracy lies itself in the properties of the ray dyna
ics, but in order to make this clearer we need to introduce
concept of a phase space in which the ray dynamics ca
described.

E. Families of rays and Poincare´ sections

A phase-space description is often used in classical
chanics because it carries more information about the p
sible trajectories than mere real-space diagrams. This
proach was recently applied to the analysis of ray dynam
in optical cavities as well@20,21#, with the goal of providing
insights that are not revealed by ray tracing in real space
particular for the treatment of non-integrable resonator
ometries, it has proved valuable to represent the phase s
of the rays in terms of Poincare´ surfaces of section~SOS!.
For our purposes, the following SOS will be chosen:

It is easy to convince ourselves by recalling Fig. 3 th
any ray trajectory in the cavity has to encounter the fo
plane infinitely many times as it propagates. However,
radial distance of these crossings, as well as the valueṙ
may vary from one crossing of this plane to the next. No
we can consider

r and pr[ṙ ~90!

as a pair of canonically conjugate position and moment
variables, and attempt to image the subset of phase s
spanned by them. In order to do this, we launch a ray tra
tory and follow it for many crossings ofz50, each time
recording the instantaneous values ofr, pr as a point in a
two-dimensional graph. The result is shown in Fig. 11.
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typical trajectory is—as mentioned above—quasiperiod
and in the SOS generates a dense set of points that all li
a smooth curve. Several trajectories have been followe
this way, and are represented in Fig. 11 by the differ
individual curves. Each curve exhibits some minimal ax
distancermin.r0; this is a true inequality because quasipe
odic orbits do not reach their point of closest approach to
z axis precisely on the focal plane. Since the SOS record
instantaneousr upon crossing the focal plane, the resulti
curves have their turning points at largerr.

The only orbits which have their real turning points e
actly at the focal plane are the periodic orbits. A period
orbit, as displayed in Fig. 10~a!, generates exactly two dis
crete points in the SOS, corresponding to the two disti
values of the radial distancer at which the axisz50 is
crossed. Both points in the SOS lie atpr50 for the periodic
orbit, as can be verified from the trajectory in thez-r plane
which always crosses thez axis perpendicularly. The quas
periodic trajectory of Fig. 10~b! corresponds to the leftmos
curve in Fig. 11, which has its turning point almost atr0 in
the SOS. The caustic is almost on the focal plane, but
offset from it by an amount that is not discernible in Fi
10~b!.

The distinction between the periodic orbit and its clos
neighboring quasiperiodic relative in the SOS of Fig. 11
appreciable—a pair of points generated by the former, ve
a one-dimensional curve for the latter. But exactly on the l
pr50, there exists an infinite number of other pairs
points, belonging to the periodic orbits of the same famil

The SOS in these coordinates allow us to see directly
which places the focal plane comes into contact with the r
under consideration. This is a central piece of informat
when it comes to estimating the focusing at this plane wh
the quantum well is assumed to be. The forbidden regi
around thez axis induced by the angular momentum barr
show up as inaccessible portions of the SOS toward smar.

F. Accuracy of the semiclassical approximation

We can also comment on the striking accuracy of
semiclassical approach in this system. The Poincare´ section

FIG. 11. Poincare´ surface of section of the ray dynamics fo
Lz50.1f as in Figs. 10~a!–10~c!. The minimum distancer0 from
the z axis, given by Eq.~87!, is indicated by the dashed line. A
quasiperiodic trajectories fill smooth curves extending betw
some minimumrmin>r0 and r52 f . The two gray dots are the
crossings of the focal plane generated by a periodic orbit, as sh
in Fig. 10~a!. The plot uses 2f as the length unit.
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shows that almost all trajectories~with the exception of the
periodic paths! generate curves with the same topology: th
begin and end atr52 f , with one turning point inbetween
There are other integrable systems for which the Poinc´
section has a more complicated structure, one closely rel
example being the ellipsoidal cavity@22# or its two-
dimensional counterpart, the ellipse billiard@23#. In this case,
the phase space consists of two components in which
topology of the trajectories is different: One type of motio
consists of rays circulating around the perimeter as so-ca
whispering-gallery orbits; the other is a bouncing-ball osc
lation across the short diameter@24#. There is a division be-
tween these two types of trajectories, similar to that betw
oscillation and rotation in a pendulum—called the separat
The WKB approximation or its higher-dimensional genera
zation, named after Einstein, Brillouin, and Keller, cannot
applied without severe corrections in the vicinity of such
separatrix in phase space@25,22,23#. In our case, this break
down never occurs, and semiclassical results are thus of
accuracy. Being a conic section, the parabola can of co
be considered as a limiting case of the ellipse, with one of
foci moved to infinity. This leaves no possibility fo
bouncing-ball trajectories, which leads to the absence o
separatrix.

Finally, it is worth asking why the sharp corners at t
intersection between the paraboloid and the focal plane
not cause any corrections to our semiclassical treatm
even though the surface curvature at these points is cle
much shorter than the wavelength. It is known that in su
casesdiffraction can occur, which makes it impossible t
explain the mode structure purely based on classical or
@26,27#. However, this phenomenon is absent for certain s
cial angles subtended by the corners. One of these ‘‘beni
angles is precisely the 90° angle we encounter at the cor
of the double paraboloid~cf. Fig. 3!. When the confocal
condition is violated, so that deviations from a right ang
occur at the corners, we have to expect diffractive corr
tions to the semiclassical analysis, resulting from class
rays that hit the corners and are reflected in an arbitr
direction because the law of specular reflection is undefi
in that instance. Fortunately, we shall see in Sec. VII t
such orbits are far removed from the regions of phase sp
where we expect the important focusing modes to lie.

In this section, we have discussed how the ray dynam
develops a caustic structure, and how the latter can be
resented with the help of the Poincare´ section. We have also
observed that the high-intensity regions in the wave soluti
correspond to the ray caustics, because there the densi
rays is high—in fact divergent if we recall the discussion
the classical turning points in the effective potential belo
Eq. ~47!. Therefore, even in situations where we cannot o
tain the wave solutions easily, their possible intensity dis
bution can be inferred by investigating the ray dynam
first. This will now be carried out for a cavity that deviate
from the ideal model shape.

VII. NONCONFOCAL DOUBLE PARABOLOID

Having obtained an overview of the types of ray moti
that can be encounterd in the parabolic dome, and es
lished the connection to the mode structure of the full v
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torial wave equations via the short-wavelength approxim
tion, we now want to introduce a model cavity for which th
wave solutions cannot be obtained by separation of variab
The variety of possible deviations from the ideal model g
ometry of Fig. 3 is enormous, so we have to restrict atten
to certain special distortions that can be expected to be
neric in some sense.

A. Model deformation

The distortions we choose are obtained by pulling the t
intersecting paraboloids in Fig. 3 apart or pushing them
gether along thez axis by an amount 2e. Specifically, in
spherical coordinates as a function of polar angleu, the
shape is given by

r ~u!5
2 f

11cosu
1

2 e

11A11e ~12cos2u!
. ~91!

The respective foci, which coincide in the integrable mod
then move off ther axis. This nonconfocal arrangement
the parabolic walls can be viewed as a model for fabricati
induced deviations from the ideal cavity shape—where
dome could be slightly too flat or too pointed. It can also
interpreted in a different way, taking into account the pos
bility that the boundary condition at the base of the dome
not exactly given by Eq.~7!, if some penetration of the field
through the dielectric mirror on the quantum well is tak
into account. This is of course a realistic expectation, and
effect on the wave solutions would be that the TE elec
field no longer needs to be strictly symmetric under refl
tion at the focal plane. If one maintains that the dome
indeed been fabricated with its base in the focal plane,
‘‘soft’’ boundary condition on the mirror can be modeled b
assuming that our solutions should correspond to waves
flected at a plane removed from the dielectric interface
some amounte.

Therefore, the nonconfocal double paraboloid is a way
taking into account the cumulative effects of fabrication u
certainty and soft boundary conditions at the dielectric m
ror with a single model parametere, denoting half the dis-
tance between the foci of the top and bottom parabolic w
in the unfolded cavity. One could think that a perturbati
theory ine could allow us to use the solutions obtained so
and smoothly extend them to the non-confocal situation. T
is the traditional approach in physics and it is the reason w
only simple, integrable systems are treated in textbooks
quantum mechanics or classical mechanics alike. Howe
perturbation approaches become tedious and even impos
for wave equations whose short-wavelength limit~i.e., ray
picture! exhibitschaotic dynamics. The difficulties that arise
can already be seen without introducing chaos, if we try
obtain the wave functions of an ellpsoid-shaped resonato
a perturbative expansion starting from the eigenfunctions
a spherical cavity. This poses no problems as long as on
interested only in modes of the ellipsoid whose topology
analogous to that found in the circle@28#. However, as men-
tioned earlier, the ellipsoid exhibits separatrix structure
phase because there exists a type of motion that the sp
does not possess: the bouncing-ball trajectories.
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Analogousnonperturbativeeffects arise in the presen
model, because the distortion can lead to new types of
jectories that are not present in the confocal cavity, in
process known as bifurcation@29,30#. The first consequence
of the deformatione is that the infinite families of periodic
orbits break up, leaving only a distrete number of perio
orbits of the same topology, which can be divided in
equal number of stable and unstable paths. Stable paths
the property that rays with slightly different initial condition
remain close to the given periodic path for all times, wh
unstable periodic orbits are surrounded in their immedi
neighborhood by chaos—trajectories deviate from such a
riodic orbit at an exponential rate if the initial condition
only infinitesimally varied. For more quantitative statemen
and further background on the transition to chaos, the rea
is referred to the literature@29,31,18#.

B. Unstable and stable ray motion in the deformed cavity

The Poincare´ section is very suitable as a diagnostic to
to identify this process of emerging chaos on on hand,
the stabilization of certain periodic orbits on the other ha
This is illustrated in Fig. 12. The perturbation consists
pulling the foci of the walls apart bye50.02f along thez
axis. Since this preserves the axial symmetry of the cav
Lz is still a conserved quantity—the arguments of Sec. V
rely on no other symmetries of the problem. We choseLz
50.1f in the plot. The small distortion of 1% is alread
sufficient to change the phase space portrait significan
compared to Fig. 11. The unstable periodic orbit~appearing
prominently in Fig. 12 as a so-called hyperbolic point! is
shown in its spatial pattern in Fig. 13~a!. It is a self-retracing
periodic orbit because it reflects from the boundary at norm
incidence~in the z-r plane!.

The effects that chaos can have on the ray motion
illustrated in Fig. 13~b!. Shown here is a single ray trajector
which superficially has some similarity to Fig. 10~b!. How-
ever, the path does not trace out a well-defined caustic in

FIG. 12. Surface of section atLz50.1f of a nonconfocal
double-paraboloid, with foci pulled apart bye50.02f . This desta-
bilizes the cavity, leading to chaotic ray dynamics which genera
an irregular cloud of points filling almost the whole region that
accessible for thisLz . A special point is encountered on the lin
pr50, where the irregularity gives way to a confluence of hyp
bolic traces whose vertices are centered on a single, unstable
odic orbit. The spatial pattern of this new periodic orbit is shown
Fig. 13~a!.
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8694 PRE 62JENS U. NÖCKEL et al.
13~b!. What looks like a caustic here is in fact better d
scribed as two caustics of the type in Fig. 10, arranged
most symmetrically with respect to the focal plane. Note,
particular, the symmetric occurrence of cusps both be
and above the linez50. Recall that in the integrable case th
positionsr0, and z0 of the caustic singularity are uniquel
given by the turning pointsj0 andh0 ~or equivalentlyu0 and
v0), in the effective potential. Reversing the sign of the cu
coordinatez0 corresponds toexchangingthe role ofj andh.
The significance of Fig. 13~b! is therefore that the degrees
freedomj andh are no longer decoupled, because durin
single ray trajectory both the cusps atz0 and 2z0 are
reached. By virtue of Eq.~89!, the quantityZ is thus not
conserved any lomger. A trajectory is able to exhibit m
tiple points of closest approach to thez axis, and is not
strictly guided by caustics.

Under these circumstances, it is not clear what to exp
for the mode structure of the cavity, because we lose
possibility of labeling the eigenstates by a complete se
quantum numbers. This does not imply that there are
modes associated with chaotic rays, but one requires a
tional techniques to perform a semiclassical quantiza
@31,32#. The destruction of the conserved quantityZ means
that there is one less constraint which the ray trajecto
have to satisfy; this allows them to fill two-dimensional are
instead of one-dimensional curves in the SOS. Since the S
gives us a picture of how rays intersect the planez50, cha-
otic rays can be seen to show a less concentrated ove
with that plane. We anticipate that the presence of true ca
tics is required to create the best focusing action. With t
hypothesis, the goal must be to identify ray orbits that exh
caustics. This occurs in the vicinity of stable periodic orb
due to the fact that perturbed trajectories execute an osc
tory and in general quasiperiodic motion around such sta
orbits. In Fig. 12, however, no stable periodic orbits can
identified, telling us that, for the deformation chosen the
no stable modes withLz50.1f should exist.

The situation changes if we consider Fig. 14, in whichLz
is the same but the sign of the nonconfocal displacemente is
reversed. The walls of the double paraboloid are he
pushed together instead of being pulled apart. The resu

FIG. 13. Trajectories in the nonconfocal cavity.~a! shows the
unstable periodic orbit arising ate50.02f , and Lz50.1f ; cf. Fig.
12. For the same parameter, a chaotic trajectory is seen in~b!.
Oscillatory motion around stable periodic orbits occurs in~c! and
~d!, wheree520.02f andLz50.1f , as in the SOS of Fig. 14. The
patterns of type~a! and~c! derive from the periodic motion of Fig
10~a! as a result of the shape perturbation. In real three-dimensi
Cartesian space,~e! shows the straight-line ray motion~arrows!
giving rise to the curved ‘‘envelope’’ surface, whose cross sect
we see in~a!.
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phase space structure in the SOS differs markedly from
12: many trajectories trace out one-dimensional curves in
SOS which organize as closed loops, forming island cha
that proliferate with various sizes. All these islands are c
tered around stable periodic orbits—the largest island of
bility lies symmetrically around the linez50, and corre-
sponds to oscillatory motion of the type shown in Fig. 13~c!.
The center of the island is in fact formed by a periodic or
similar to Fig. 13~a!, the only difference being that sma
perturbations of its initial conditions do not lead to chaos
in Fig. 12, but to the motion of Fig. 13~c!.

Another oscillatory ray path centered at a stable perio
orbit is shown in Fig. 13~d!. The pattern should be compare
to Fig. 10~c!, which has the sameLz . The similarity is ap-
parent, except for the fact that the path in Fig. 10~c!, will
eventually fill the remaining gaps in that plot, if one follow
it for a longer time. The path in Fig. 13~d!, on the other hand
is truly restricted to the vicinity of a self-retracing orb
which reverses its propagation direction at one end due
perpendicular reflection at the wall, and at the other end
running up the centrifugal barrier perpendicular to thez axis.

All islands of stability in Fig. 14 generate their own cau
tics, which are topologically different from the ones in th
integrable system. The caustic created by the orbit in F
13~c! is simply the boundary of the regions into which th
ray never penetrates. The difference between the absenc
presence of caustics in Figs. 13~b! and 13~c! is not easily
appreciated if we consider only the real-space plots. Here
usefulness of the Poincare´ section as a diagnostic tool i
again to be noted—showing two-dimensional clouds
points versus one-dimensional curves, respectively, for
jectories without and with caustics.

It follows from the preceding discussion that a negativee
leaves us with a cavity that is in many respects similar to
unperturbed double paraboloid@cf. the ray pattern of Fig.
13~d!#. However, the qualitative and important difference
that some periodic orbits are nowmore stabilizedthan ate
50. In particular, there are simple ray bundles such as F

al

n

FIG. 14. Surface of section atLz50.1f with e520.02f . The
cavity develops a multitude of stable periodic orbits surrounded
elliptical islands. The most prominent island of stability is center
on the the linepr50 where a small circle indicates the location
the corresponding periodic orbit around which other trajectories
oscillate. Shown in the inset is the central stable periodic orbit. T
next innermost closed line in the SOS belongs to the trajec
shown in Fig. 13~c!.
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13~c! that promise reasonable focusing close to the cente
the unfolded cavity. The physical explanation for the gene
stabilizing effect that we achieved by moving the parab
loids closer together lies in the well-known fact that a tw
mirror resonator configuration has a focusing action wh
the mirrors are separated by less than the sum of their rad
curvature. Conversely, mirrors that are further apart than
criterium act in a defocusing way. This is consistent with t
observation of a large chaotic domain in Fig. 12.

These simple arguments, and the chaotic picture of
12, seem to suggest that stable ray motion is not to be
pected in the supposedly defocusing configuration withe
50.02f . However, when applying the standard criteria f
focusing and defocusing resonator geometries, we hav
bear in mind that we are dealing with a centrifugal billia
whose ray trajectories are curved. The effect of the centr
gal barrier is to push the regions of allowed ray motion o
ward, until only a small patch surrounding the equator
corners of the cavity is accessible. At largeLz the motion is
then so confined that chaos does not develop. This is jus
whispering-gallery phenomenon@17#. On the other hand, a
Lz50.1f we certainly found chaos with no remaining islan
of stability. SmallLz’s are what we must be interested in
concentration near the focal points is to be achieved.

In view of this, it is all the more surprising that the sam
cavity does in fact support stable orbits at evensmalleran-
gular momenta than in Fig. 12. This is shown in Fig. 15
Lz50.03f . The periodic orbit responsible for the sing
stable island in that SOS is again almost identical to the
shown in Fig. 13~a!, and its oscillatory neighborhood i
analogous to Fig. 13~c!; the inset of Fig. 15 shows this sim
larity. This stable orbit exists only at sufficiently smallLz ;
its associated island in the SOS shrinks to a point whenLz
'0.038f . The conclusion is thatboth the nominally focusing
and defocusing configurationse560.02f permit the forma-
tion of ray bundles with a spatial distribution as in Fi
13 ~c!, and hence the stable modes associated with this
tern should be robust. This is also confirmed by analog
Poincare´ sections for larger displacements of the foci.

FIG. 15. For the same deformatione50.02f as in Fig. 12, this
surface of section at the smaller angular momentumLz50.03f
shows that a stable orbit exists in addition to the unstable hy
bolic one. This is indicated by the elliptic~lens-shaped! island
structure. The hyperbolic point is located to the right of the isla
The ray pattern near the stable periodic orbit is shown in the in
The small corresponding mode volume is apparent.
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largerueu, motion of type shown in Fig. 13~c! and the inset of
Fig. 15 is in fact stabilized further—for both directions o
displacementsalike.

The modes corresponding to this particular ray pattern
closely related to the fundamentals waves we discussed in
Sec. III E, because both arise from ray bundles in the imm
diate vicinity of theshortestperiodic orbits in the cavity. For
e50 this was the family of paths in Fig. 10~a!, members of
which can be smoothly deformed into Fig. 13~a! without
changing the topology— i.e., the number and sequence
reflections and turning points. we shall therefore call
these orbits thefundamental orbitsof the cavity. The mode
spacing of the corresponding eigenstates should also be c
parable for the perturbed and unperturbed cases. Howe
we have to defer a detailed analysis of the wave soluti
and their semiclassical correspondence to a future pa
Here, the goal has been to introduce the ray dynamics an
phase space as the backbone on which the mode structu
built.

Assuming that the deformation ise50.02f , we have the
peculiar situation that the fundamental orbit is unstable
Lz.0.038f , ~cf. Fig. 12!. Therefore, the most desirabl
modes will be those with smallerLz . According to Eq.~78!,
we have to choose modes with lown and highk to achieve
this. For the experimental cavity we havek f'14p. Taking
n51 as in Sec. III E, we arrive at the semiclassical value

Lz5
f

14p
'0.023f , ~92!

which is close to the situation depicted in Fig. 15. The d
ference in the SOS is insignificant. We have no accurate w
of determining the actual value ofe most closely describing
the real structure, but these considerations give us cons
able confidence that modes with a spatial pattern as in F
13~c! or 15 will be found in the cavity, because the releva
Lz estimated above is in a range where this fundamental o
is stable—irrespectiveof the sign ofe and moreover largely
independent of its magnitude.

VIII. BRAGG MIRROR AS AN ESCAPE WINDOW
IN PHASE SPACE

The internal ray dynamics of the dome resonator has u
this point been evaluated under the assumption that the
ity is a perfect resonator. There are two physical mechan
that invalidate this viewpoint: absorption in the gold mirro
and transmission through the Bragg grating. The trade
between the comparatively large absorption of a metal,
the one hand, and its ability to reflect omnidirectionally,
the other hand, were discussed in Ref.@33#. In our context,
metallic absorption will always degrade theQ factor because
the gold layer provides only an estimated 95% reflectiv
@33#. However, the reflectivity of the Bragg mirror can b
significantly lower for certain modes and in that case cons
tutes the dominant mechanism forQ spoiling. The variable
that determines the reflectivity of the Bragg mirror~at the
fixed operating frequency! is the angle of incidencex with
respect to thez axis. For purposes of a qualitative analys
we assume that the Bragg reflectivity is unity forx,22°
[xc , but drops to'20% outside this cone of incidenc
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8696 PRE 62JENS U. NÖCKEL et al.
@33#. In other words,xc is the boundary between absorptio
dominated and leakage-dominatedQ factors. A second win-
dow of high reflectivity opens for rays at very oblique inc
dence on the grating surface, more specifically forx.60°.
This second window will be discussed further below.

The ray picture allows us to use this rough transmiss
criterion as a guide in order to separate long-lived cav
modes from short-lived ones. The anglex betweenzaxis and
a trajectory is, according to Eq.~72!, given by

cosx5 ṙ•ez5 ż, ~93!

so that

12 ż25sin2 x. ~94!

One can substitute this as the right-hand side of Eq.~83!, and
obtain an equation for a curve in the planeṙ,r ( ṙ5pr)
spanning the Poincare´ section:

upru5Asin2x2
Lz

2

r2
. ~95!

Using the critical value ofxc in this equation specifies th
escape condition in the Poincare´ section: the Bragg mirror
becomes ineffective when

upru.Asin2xc2
Lz

2

r2
. ~96!

In order to obtain a feeling for the type of ray orbits th
can remain in the cavity under this escape condition, in F
16 we plot the resulting curves in the surface of section
the two different values ofLz appearing in Figs. 11, 12, 14
and 15. The plot should be superimposed on these plot
decide which parts of the respective phase space falls w

FIG. 16. Assuming that the Bragg mirror stack at the planz
50 yields high reflectivity only for waves withinxc522° from the
surface normal, or for regions of high reflectivity in the Poinca´
section that are bounded by Eq.~96!. The resulting curves bounde
by upr,0.374 are shown forLz50.03 ~solid line! and Lz50.1
~dashed line!. A second high-reflectivity window exists for ray
falling between the boundary of this plot and the solid line near
boundary. This becomes relevant only for the integrable confo
cavity, because the perturbed shapes have no stable orbits in
second window.
n
y

.
r

to
in

the high-reflectivity range of the DBR grating. Note that t
critical lines for ray escape are independent of deformat
because they rely only on Eq.~83!.

As a result of this comparison, we find first of all that lo
angular momenta are required by the escape criterion,
cause the phase-space area enclosed by the critical curv
Fig. 16 shrinks with increasingLz . This is understandable
because the ray motion in this case has a strong azimu
component contributing to the tilt angle with respect to thz
axis. Let us turn our attention to the stable periodic orb
arising in the chaotic Poincare´ sections. The caseLz50.1f ,
shown previously for illustrative purposes, now turns out
be roughly the maximum angular momentum at which
stable orbit of Fig. 14 is still confined by Bragg reflectio
The lower angula momentumLz50.03f coming close to the
estimated value for thes waves of our experimental cavity
on the other hand, places the stable periodic orbit well ins
the high-reflectivity range of the DBR. For the case of
defocusing deformation this is illustrated in Fig. 15. The p
idic point is atr'0.086. For a focusing deformation of th
same magnitude,e520.02, the periodic point lies atr
'0.99. Both values are to the right of the solid line in Fi
16, corresponding to high reflectivity.

For the chaotic orbits, we observe that they spread o
over the Poincare´ section in such a way as to yield significa
overlap with the low-reflectivity regions of Fig. 16. This
true for all Poincare´ sections shown in this paper. Therefor
we conclude thatcavity modes associated with the chao
phase space regions are short lived, and the corresponding
broad resonances will not affect the spontaneous emis
enhancement of the parabolic dome. A quantitative estim
of the resonance lifetimes could be obtained by measu
the time that a chaotic trajectory spends, on average, in
high-reflectivity region, without excursions beyond the cri
cal line. However, we shall not attempt quantitative pred
tions at this stage of our investigation, and defer it to futu
work.

A quantitative analysis would also be necessary to de
mine the modal lifetimes in the marginal case of the id
confocalcavity. The reason is that the ray picture alone do
not allow a clear distinction between classically confined a
unconfined orbits, because the classification according
stable and unstable trajectories does not apply in the i
grable parabolic dome. All the solid curves in the Poinca´
section of Fig. 11 cross into the low-reflectivity region
Fig. 16 at some point, but the time spent in the hig
reflectivity range can be very long classically. To illustra
this, in Fig. 17 we show a particular ray trajectory forLz
50.1f in the confocal paraboliod, which for almost 50
crossings of the focal plane remains inside the regions
high reflectivity. This time, the second window of high r
flectivity close to the border of the SOS is important beca
the ray alternates between the low- and high-x windows
from one crossing of the focal plane to the next. The regu
nature of this motion makes long lifetimes possible beca
it strictly prevents the ray from entering the low-reflectivi
region for long times, whereas a chaotic orbit would quick
explore this domain in a quasirandom way.

The trajectory shown in Fig. 17 is practically identical
the one shown in Fig. 10~b!. The alternating way of inter-
secting the focal plane can be understood from that figure
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PRE 62 8697MODE STRUCTURE AND RAY DYNAMICS OF A . . .
from Fig. 10~a!, which shows periodic orbits closely neigh
boring the quasiperiodic trajectory of plot~b!. Note that the
ray model allows us, in addition, to predict the spatial loc
tion where the mode corresponding to this ray bundle w
preferentially be coupled out through the Bragg mirror.
can be seen in Fig. 17, the low-reflectivity region is reach
for the first time when, after many reflections, the trajecto
departs from the immediate neighborhood of the focal
gion, i.e., intersects the focal plane with ar that is slightly
too large.

The subtle balance of parameters that prevents chaos
appearing will, in all experimental realizations, be shifted
either the defocusing or the focusing side. Therefore,
above ray analysis of the mixed phase spaces for these
situations above is our main concern. However, as in pr
ous sections the integrable case is a useful starting poin
illustrate our strategy. The advantage of the ray approac
that it provides fast and intuitive predictions, but furth
studies are required in order to determine how this mo
succeeds in characterizing the cavity quantitatively. Pa
doxically, we can already conclude that the existence
chaos and islands of stability makes it easier to obtain res
from a ray analysis, because there is a sharper separ
between long lifetimes for the stable modes discussed ab
and short lifetimes for modes associated with the cha
portions of the SOS.

IX. CONCLUSION

In this paper we have examined the modal structure of
electromagnetic field in a semiconfocal planoparabolic c
ity ~or, equivalently, in a double-paraboloid confocal cavi!
in view of our recent fabrication of semiconductor micr
cavities having that geometry. In order to account for
effects of the inevitable fabrication defects, we also cons
ered the stability of the modes with respect to deformati
consisting of deviations with respect confocality. This the
retical analysis was thus motivated by our ongoing exp
ments on these structures, and feeds back into this ex
mental work by opening an interesting perspective in ter

FIG. 17. The Poincare´ section combined with the escape cond
tions can be used to extract information about the lifetime and
cape locations. This is illustrated here for a single ray orbit~black
trace!, followed for 500 crossings of the focal plane. The gray a
is the region which has to be avoided by the ray in order to rem
in the cavity.
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of investigating the chaotic structure and dynamics of so
of the modes of cavity.

Regarding the structure of the modes in the parabolic c
ity, we note that the scalar wave equation is solvable ana
cally by separation of variables. However, the vector
boundary conditions for the electromagnetic field dest
this property, leaving only the cylindrical symmetry. Neve
theless, the fundamental series ofs waves~free of azimuthal
nodes! in a confocal electromagnetic cavity can be solv
rigorously. It has its energy concentrated in a small volu
~of orderl3) around the focal point, even though at the foc
point itself the electric field is zero due to the vectorial natu
of the field. The higher order modes cannot be solved
readily in the full three-dimensional model, but it is possib
to appreciate their features by reducing the problem to sc
form. In these higher order modes, the energy is concentr
in lobes that surround the focal point, but avoid it because
the centrifugal barrier that arises from the cylindrical sy
metry. Indeed, these modes correspond to non-zero value
the angular momentum (mÞ0) and for large values ofm
tend toward a type of whispering-gallery modes with inte
sity concentrated in a ring along the focal plane,@cf. Fig.
10~d!#.

The stability of the modes of the parabolic cavity wi
respect to geometrical deformations can be assessed b
amining the ray trajectories that correspond to each mo
For a deformation that corresponds to a small deviation fr
confocality, chaotic ray patterns emerge. However, we a
find stable ray orbits concentrated in a small part of the c
ity volume. Independent of deformation, the most importa
stable orbits are those which in cylinder coordinatesr andz
follow the shortest possible periodic trajectory. This gene
topology is the same for a range of deformations~including
the ideal confocal cavity!, and corresponds to a ray returnin
to the samer and z after two reflections, missing the foca
point by a small amount because the field there has to van
The generic shape of this orbit is represented in Fig. 13,
its special modification in the confocal case with its margin
stability is shown in Fig. 10. The topological equivalen
between the stable orbits of the distorted cavity, on the
hand, and of the confocal system, on the other hand, in
cates that the structure of the fundamentals wave is stable
with respect to deformations.

From an experimental viewpoint, the results of this the
retical analysis indicate that the cavities already fabricate
our laboratory should possess stable modes in which the
ergy is confined in a volume of orderl3 in the vicinity of the
focal point, in spite of fabrication errors. The higher ord
modes, in which the field is concentrated away from t
focal point, in whispering-gallery-type configurations, w
be unstable because of the presence of fabrication defect
the same time these modes will decay quickly fast as t
correspond to oblique incidences onto the Bragg mirror
angles for which the mirror is no longer reflecting. Expe
ments are in progress to characterize the structure and
namics of both the stable and unstable modes@7#. The robust
stable modes in which the field is confined in the vicinity
the focal point should give rise to a strong enhancemen
the spontaneous emission of a dipole~such as a semiconduc
tor quantum well or a semiconductor quantum box! placed
there, and a concomitant lowering of the lasing thresho
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even for our cavities that are of mesoscopic dimensions. T
is because because even in such large cavities, whose
metric volume is of the order of a few thousand cubic wa
lengths, the central lobe of the fundamentals wave ~which
contains most of the energy! has an effective volume of th
order of one cubic wavelength.

These considerations underscore the interest that p
bolic microresonators present by exhibiting quantum elec
dynamic effects as well as optical chaos, in spite of th
relatively large dimensions. In addition, the mesoscopic c
ity dimensions of these structures are an important prac
feature, as they make the fabrication accessible to exis
experimental techniques~such as focused ion beam etchin!
while, at the same time, they greatly facilitate the theoret
analysis of these devices as they permit the use of sh
wavelength approximations.
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APPENDIX: PARABOLIC COORDINATES

The parabolic coordinatesj, h, andf are related to the
three-dimensional Cartesian coordinates according to

x5Ajh cosf,

y5Ajh sinf, ~A1!

z5 1
2 ~j2h!,

or, equivalently,

j5r 1z,

h5r 2z, ~A2!
v

.A

S.

hy

T.

O

is
eo-
-

ra-
-

ir
-

al
g

l
rt-

-

f5arctan
y

x
,

where r 5Ax21y21z2 is the spherical radius vector. Wit
this definition, j and h have the same dimensions as t
Cartesian coordinates, which is helpful for physical cons
erations. The surfacesj5const are paraboloids by revolutio
about the positiveẑ axis having their focal point at the ori
gin, while the surfacesh5const are directed along the neg
tive ẑ axis. The planez50 corresponds to the conditionj
5h. In terms of the cylindrical coordinatesr5Ax21y2, z,
andf, the parabolic coordinates obey

r5Ajh,
~A3!

z5 1
2 ~j2h!

and

r̂5
1

Aj1h
~Ah• ĵ1Aj•ĥ !,

~A4!

ẑ5
1

Aj1h
~2Aj• ĵ1Ah•ĥ !.

In these parabolic cordinates, the electric fieldE
5(Ej ,Eh ,Ef) is related to its representation in cylindric
coordinates according to

EW 55
Ej5A h

j1h

i

A2
~E12E2!2A j

j1h
Ez

Eh5A j

j1h

i

A2
~E12E2!1A h

j1h
Ez

Ef5
1

A2
~E11E2!.

~A5!
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