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Mode structure and ray dynamics of a parabolic dome microcavity
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We consider the wave and ray dynamics of an electromagnetic field in a parabolic dome microcavity. The
structure of the fundamentalwave involves a main lobe in which the electromagnetic field is confined around
the focal point in an effective volume of the order of a cubic wavelength, while modes with finite angular
momentum have a structure that avoids the focal area and have correspondingly larger effective volumes. The
ray dynamics indicate that the fundamergalave is robust with respect to small geometrical deformations of
the cavity, while the higher order modes are unstable, giving rise to optical chaos. We discuss the incidence of
these results on the modification of the spontaneous emission dynamics of an emitter placed in such a parabolic
dome microcavity.

PACS numbes): 42.25-p, 42.55.Sa, 05.45.Mt, 05.45.Ac

I. INTRODUCTION This paper presents a theoretical analysis of microcavities
formed by a parabolic mirror at or close to the confocal
The miniaturization of optoelectronic devices such ascondition. The study is motivated by experimental work in
light-emitting diodes or semiconductor lasers is expected tovhich such a system has in fact been fabricated. The experi-
lead to an improvement of their energy efficiency, and to amental characterization of the modal structure and dynamics,
lowering of the lasing threshold. This tendency toward min-now in progress, will be given in a separate publicafidh
iaturization has led to the exploration of optical microcavi- Here we briefly describe the experimental structure, in order
ties whose dimensions are of the order of a few wavelengtht® define the system for which our model calculations are
[1]. In such microcavities the extreme confinement of theintended. We have fabricated a semiconfocal planoparabolic
electromagnetic field modifies the interaction of the activesemiconductor microcavitysee Fig. 1 by etching an appro-
medium with the radiation field, so that the process of sponpriately prepared GaAs wafer by a focused ion béd8into
taneous emission is altered both in its spatial and dynamicdiroduce a “hill” of cylindrical symmetry and parabolic ver-
characteristics. Spontaneous emission can thus be redirectd@gal cross section having a diameter of Z& and a height
enhanced, or inhibited in a way that may be exploited for thedf 1.8um [corresponding to optical lengths of X7and
operation of light-emitting diodes or lasers. A modification 6.75\ respectively, for a wavelengttin vacug of 960 nmj
of the characteristics of spontaneous emission, such as iwhich was subsequently covered with a thin metallic layer of
directionality or the emission rate, was shown for several
microcavity designs such as for the traditional Fabry-Perot
planar cavitied2] and for disk-shaped3] or spherical[4]
cavities displaying whispering gallery modes.
One of the key requirements for enhancing the dynamics
of spontaneous emission and reducing the laser threshold i
that the electromagnetic field at the site of the emitting di- 55«
pole should be enhanced inside the cavity with respect to its 2_501 s
value in free space. A class of resonators for which this can ggql. ;
be achieved very efficiently is that of confocal cavities: A 20~ \l
few experiments with spherical confocal caviti€s], or b.
semiconfocal microcavitie$6] were reported already, in 18
which significant spontaneous emission modification or ex-
tremely low laser thresholds were observed. Among the dif-
ferent designs of concave mirroggrabolic mirrors have an
important advantage in that their focal point displays no
astigmatism, and is free from spherical aberrations. Basic
geometric optics thus leads us to expect that double-
parabolic confocal cavities or planoparabolic semiconfocal FiG. 1. Atomic force microscope image of a “hill” of diameter
cavities should display a strong enhancement of the electrar2 ,m and a parabolic cross section of height 418, etched on a
magnetic field in the vicinity of the focal point, and a con- GaAs substrate by a focused ion beam apparatus. When covered
comitant modification of the emission characteristics of anwith gold this constitutes a concave parabolic mirror, with its focal
active medium placed there. point inside the GaAs substrate.
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! surprising at first sight that the WKB approach yields an

_________ - A S°'d mirror excellent quantitative agreement with the exact cavity spec-
1.8 um i rous trum even for the longest-wavelength modes of the parabolic

I uantum well . . . . L -
cavity. We show how this arises by discussing in detail the

- structure of the classical ray dynamics in the resonator which
: DBR makes the WKB approximation possible. As a result, we
; shall then also be able to assess the stability of the modal
7.2 um structure with regard to fabrication imperfections, based on a
ray analysis for parabolic cavities in cases where confocality
FIG. 2. Schematic cross section of a semiconfocal paraboli is violated._ To character_ize the modes of the parabolic reso-
o - . . Sator, the internal caustic structure formed by the rays turns
dome cavity, consisting of a parabolic gold mirror and a planar . - .
Bragg mirror placed at the focal plane of the parabola. The cavity(.)Ut to be of cr_u0|al importance. Thes_e conS|_derat|c_)ns estab-
spacer is made of GaAs, and the light emitter is a quantum Wel|ISh a cormectlon between thg the microcavity optics of the
placed in the vicinity of the focal plane. pa}raboI0|c .dqme and the flelq of gquantum chaols: even
minute deviations from confocality introduce chaos into the
ray dynamics, and we have to address the significance of this
effect for the relevant cavity modes.

The paper is organized as follows: Sec. Il, introduces the

gold. This gold dome constituted thus a concave paraboli
mirror with its focal point inside the GaAs substrate. At the

base of the parabolic hill, the wafer had a six-period th tical model that d ib focal boli ;
GaAs/AlAs Bragg mirror, closing the semiconfocal cavity mathematical modet that describes confocal parabolic cavi-
ties, while Sec. Ill presents the wave equation for the elec-

(see Fig. 2 This cavity is expected to possess a mode in

which the electric field is strongly enhanced in the vicinity of tromagnetic f|e_ld n cyhndnca_l and parabolic cc_)ordlnates_,
the focal point, so that a localized semiconductor emitterand discusses its exact vectorial and scalar solutions. Section

such as a quantum box or quantum well, emitting at a Wavel-v presents the WKB approximation of the wave equations

length near 960 nm, will have its spontaneous emissioﬁOr the parabolic cavity, an_appr_oach that_in Seq. VI wil
greatly enhanced when placed there. The use of a dielectrf&erm't us to make a c'onnect|on with ray optics, while Sec. V
mirror with a lower refractive index rather than a metallic €0MPares t_he n_umerlcgl so!utlons of the wave equatlons_ n
mirror at the focal plane is important because it introduces éhe _parabollc_ m|cro_caV|ty with those pf the WKB approxi-
boundary condition that requires the tangential electric field. ation. _Sect|on Vi mtrodu_ces thg main concepts of ray op-
to be maximal at the focal plane. This condition cannot beliCs applied to our parabolic cavities with cylindrical symme-

fulfilled on a metallic mirror, on which the tangential electric try, while Sec. VIl analyzes the stability of the ray

field should vanish, thus producing a vanishing field at thetdraje_c:_orief in a pa;rab?ltic (éavi:_y invvl\irig.h there istha sliggt
focal point of the parabola. eviation from confocality. Section iscusses the prob-

In order to understand the operation of such a cavity, an m of the finite acceptance angle of Bragg mirrors, a feature

to assess its performance in modifying spontaneous emi hat limits the ”fe“”?e of ques in semiconfocal c_avities
sion, in this paper we first examine the modal structure of a ounded by. such mirrors. .F|na_IIy, Sec. 'X summarizes the
ideal confocal double-parabolic, or semiconfocal planopara[esurtS of this study, and gives its conclusions.

bolic, microcavity. We then investigate the stability of these

modes with respect to geometric deformations of the cavity Il. MODEL

that correspond to deviations from confocality; this condition
is inevitably violated in a realistic cavity due to fabrication
defects. The discussion of this case provides a conceptu
and theoretical background for the experimental analysis tQ;
be presented in a subsequent paper.

The calculation of the modal structure of the parabolic
dome microresonators cannot be treated within the paraxial 2
approximation of conventiongB] resonator theory, because z=f——, 1)
of the very large aperture displayed by the parabola and be- 4f
szli/se?eahg?h?aégeglsrirl’ir;gg? ihaerep;?gfjrz%lgréii::aetigrl?tlfo%\llheref is the focal dista_nce of the parabola, while the focal
highly convergentor divergent beams produced by para- plane(and the planar mirrgrcorresponds to
bolic mirrors are cumbersome even in macroscopic resona-
tors [10], where the optical axis is long compared with the
wavelength—in microresonators, the latter breaks down a

well. However, there are other approximate technique ) . .
PP . nates €, 7n,¢), whose properties are summarized in the Ap-

which are well suited to the problem we consider. As a valu . X
able tool for simplifying the exact solution of Maxwell's pend|?<. F.or referen_ce, here we rep.roduce the transformation
to cylindrical coordinates as given in EGA3):

equations for the cavity modes, we employ a short-
wavelength approximation leading to simple WKB quantiza-
tion conditions. The assumption that wavelengths are much p=Nén,

shorter than the relevant cavity dimensions is common to (©)
both WKB and paraxial approximations, and it is therefore z=3(é— 7).

We consider a model structure for an ideal semiconfocal
cavity which is bounded by a metallic concave parabolic
irror on one side and a planar dielectric mirror on the other
de, placed at the focal plane of the parabola. In cylindrical
coordinates f,z,¢), the parabolic mirror is given by

z=0. (2

is convenient to describe this cavity in parabolic coordi-
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FIG. 3. (a) Representation of parabolic cylinder coordinates inzheplane of a cylindrical coordinate system i§ the vertical axis
The third dimension is obtained by rotating the figure arommy the angleg. PointA is specified byé=1.3f, »=0.9f, and¢=0. The
focus of all parabolas is at the origifin) By unfolding the parabolic dome into a double paraboloid, the boundary conditions on the common
focal plane can be restated as simple parity requirement under reflection at thiszste®e For TE modes, the electric field must be even
under this reflection. The unfolded cavity is shown in side view with meridians which make 90° corners at the focal plane. The latter is also
the equatorial plane of the cavity.

To illustrate this coordinate system, in Fig@Bwe show Ill. WAVE EQUATION
how the intersection of the coordinate surfaces defines a . _ )
point A in the planez versusp. Also shown is the cavity The electric fieldE obeys the vectorial wave equation
shape itself: the parabolic mirror corresponds to -
- J°E
_ VXVXE+ue—=0 (8)
£=2f1, (4) a2

and the planar dielectric mirror is at under the additional constraint that its divergence must van-

£=1. (5) sh:

In an ideal cavity, the parabolic metallic mirror can be V-E=0. 9
assumed to be lossless, displaying an amplitude reflectivity
r=—1. This produces ar phase change upon reflection so The boundary conditions and the constraint of zero diver-
that it corresponds to a boundary condition in which thegence imposed on the electromagnetic field in general will
tangential electric field vanishes. In parabolic coordinatedead to a coupling between the various vectorial components
this can be expressed as of the electric and magnetic fields. In simpler geometries
such as cylinders, spheres, or rectangular cavities, a suitable
E,(§=2f)=0, E,(§=2f)=0, Bg¢{=2f)=0. (6) choice of polarizations reduces the problem to finding the
eigensolutions of a scalar Helmholtz equatidri], How-
Similarly, the planar dielectric mirror can be assumed toever, in our case the three polarizations and the intersecting
have a reflectivity ofr=+1, producing no phase change parabolic surfaces forming the resonator cannot be labeled
upon reflection, so that the tangential magnetic field vanishepy the coordinate lines of a single orthogonal coordinate sys-
on the focal plane of the cavity. In cylindrical coordinates,tem, as is possible in the textbook systems mentioned. We
this can be expressed as now discuss the implications of this complication.
By(2=0)=By(z=0)=0, E,(2=0)=0. ™ A. Vector field components in cylindrical coordinates
Alternatively, this implies that the tangential electric field is  After combining Eqs(8) and (9) to the wave equation,
maximum on the focal plane, and is symmetric under reflec- R
tion of the whole cavity at the=0 plane. Thus, instead of pe P’E
considering this plane as an additional boundary with prop- VE- e—=0, (10
. - . ot

erties (7), one canunfold the cavity across this plane by

reflection, to obtain a confocal double paraboloid shown ir\N L
. g : ) .~ we can take advantage of the cylindrical symmetry of the
Fig. 3(b). This extended cavity requires only the metallic problem by expressing the wave equation for a time-

gﬁgriltdsa(ray uﬁ\?;ﬁ!g?r:ﬁ VC\)/EK':E apn?jrabgrlg:i;\églrlcsﬁetgagés IFSVI).HI harmonic electric field oscillating at frequenayin cylindri-
q : 7 geda. cal coordinatesg,z, ¢), as

support modes that can be either symmetric or antisymmetri¢
under reflection at the focal plane. If we restrict ourselves to

modgs in whichg, and E, are lsymmetric, th?s subset is. V2E _i _E@Jrluesz =0, (113
identical to the modes of the original dome with the condi- Popr Tt p? i ’
tions of Egs.(6) and (7).

The advantage of considering the unfolded cavity is that 1 2 JE
the focal plane as a physical boundary drops out of the dis- VZE¢— —E,+— —”+,u6w2|5¢20, (11b
cussion; this will considerably simplify the interpretation in p2 " p? 0

terms of the ray picture later on. Therefore, in the remainder
of this paper, we can refer to Fig(t8 as our model system. V2E,+ uew’E,=0. (110
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We note that the wave equation couples the radial and angthe first line expresses the conditi&=0, and the second
lar components of the electric fiel&E( andE,), while the  and third lines represefit,=0 andB,=0, respectively. On
equation for the axial componeri, is scalar. One can the “bottom” parabolic mirror the boundary conditions are
achieve a further simplification in this system of equations ashe same as in Eq16), with ¢ and 7 interchanged.

follows:

The rotagonal Zymmet?’ ﬁ“ound tizeaxis [;erzmi;s Igs ;Oh B. Absence of longitudinal electromagnetic modes
assume ependence of all components of the field of the .
form a dep P Unfortunately, the set of boundary conditiofisgs. (16)]
is not yet a complete list of constraints that we have to sat-
Q(p,z)em?. (12)  isfy. An additional requirement is that the field at every point
in the resonator has to have zero divergence, which in para-
With this ansatz, Eqg11a and(11b) can be written as bolic coordinates reads
V2L 1K21IE _FE — 9 2én | 0 d
PV KR, ~E,=2imE,, (139 E,~E_+m(E; +E_)+— " —+—> E,—E
o +—E_+m(E. *)§+77(9§(977(+ -)
V+k“JE,—E,=—2imE,, 13b i
4 P ' o 2i\2¢7 (9+ a)E—O (1
where k= \uew is the wave number inside the parabolic E+ 13 77(977 z = 7

dome. If the azimuthal quantum numbmer=0, this reduces . ) ) o

to two identical equations. If, on the other hama#0, we  This assumption already entered into the derivation of the

can form a suitable linear combination Bf, andE,, which ~ System of wave equatioft0), from the original Maxwell

decouples these two equations. Naively setfipg=0 would ~ €duations in the form of Eq(8). However, this does not

not achieve this goal, because it forces both field componeng@uarantee that all solutions of Eqd.0) or (11) satisfy Eq.

to vanish. (17). The latter is just the well-known statement that the
The proper linear combination in which to decouple this€lectromagnetic field is purelyansversgruling out longitu-

system of differential equations is obtained with the defini-dinal modes: the transverse electric fi@ld is related to the

tions curl of the magnetic field by the Maxwell equation
| Vxé—laé—'ké 18
EP=E(E+—E_), =< ot KEL (18)

14 - -
(149 and hence satisfie¥-E, =0; the longitudinal fieldgj,

(EL+E_). which can be written as the gradient of a potentlal is
responsible for violations of Eq17).
In view of the constraints imposed by the boundary con-
ThenE. is the solution of the equation ditions (16) and by the zero divergence conditiét) it is
not possiblgexcept for the casm=0, as we shall see lajer
to set ongor two) of the vector components to zero without

This definit . K £ th imuthal ; setting the full electric field identically to zero, and thus it is
IS definition again makes use of the azimuthal Symmetry, . ,qsjpe to reduce in a rigorous manner the vector prob-

of the resonator, which implies that the circular polarizationsIem into a scalar one. The problem can in principle be solved
L= f_ri/\/i(lf—fi@ are decoupled in the cylindrical wave py converting Eq(17) from a condition in the cavityolume
equation. In this way, we have therefore formally decoupledo a boundary conditionwhich can then be treated on the
the original system of equationdl) for the vector field same footing as Eq$16). One way of achieving thi12] is

E¢E

ol -

P’ [V2+k?E.=(1+2m)E. . (15)

components. In the special case=0, case€, andE_ will by noting that if
moreover be linearly dependent because their respective
equations again coincide. Eo=E, + EH (19

However, this decoupling of polarizations in the wave
equation does not reduce the problem to a truly scalar ondulfills Eg. (10), then so does
because the field components are still coupled by the bound-
ary conditions and by the condition of zero divergence. On E=K2V XV X I§0=k2V><V>< |§L . (20)
the “top” parabolic mirror, conditiong6) in terms of the

cylindrical components of the electric field =2f now  The latter is automatically divergence free. In orderEoto

read satisfy the boundary conditidﬁt=0, we require forl?o that
(B, —E)+V7E,=0, (Eo)=0 and V-Ey=0 21)
E.+E-=0, (16) on the surface. Then one indeed has

d = _ 1,2 =\ _L2(B = L2\ —
2 — Ei=k(VXVXEq)=k“(Eo+V(V-Ep))=k(E)=0
5 (Es HE)=0. (22
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on the boundary. The problem is therefore reduced to findingieneral solutions to the formally scalar differential equa-

the auxiliary fieldE, and then deducing the transverse fieldtions, Egs.(11¢ or (15), we express the scalar Laplacian
from Eq. (21). This leads to a system of three second-orderppearing there in parabolic coordinatéss, ¢), leading to

differential equations for each vector component Bf, the form

given by Eq.(11), all of which are coupled by boundary 4

conditions that are, however, quite complex. _
The next step is then to write the field components as &ty

linear combinations of independent general solutions of Eq.

(11), and determine the unknown coefficients in that expanWhere

sion from the matching conditions at the boundary. The so-

9129, 9 R, 0™
0§(§a§)+an(”an”+kQ‘§nQ’ 23

lution proceeds in an analogous but much less tedious way if n=m+1 for Q=E.,

we neglect the additional divergence condition. The impor-

tant simplification is that we are then able to considerghe n=m-1 for Q=E_, (24)
and E_ components of the electric field independently, by

setting all except for one component to zero. Boundary con- n=m for Q=E,.

ditions (16) are then decoupled as well. More precisely, it
will be shown that the wave equations are then not onlyHere we have used the fact that the derivatiiéi¢® ap-
scalar but alsseparable i.e., reducible to the solution of pearing in the LaplaciaW? pulls down a factor-m? due to
ordinary differential equations. the ansatZEq. (12)]. Although the right-hand side is the
We therefore would like to neglect the coupling that re-analog of the centrifugal barrier in cylindrical problems, it
sults from the condition of zero divergence, provided thatthus depends not on angular momentomdirectly but on a
this can be justified in the context of the present study. Thergnodified azimuthal mode number This occurs due to the
are various reasons why this approximation will provide usadditional¢ derivatives introduced when we transformed the
with useful results. Foremost, it will turn out below that the vector field Components to Cy|indrica| coordinates in Eq
most important modes we find in this way in fact conspire to(11).
satisfy Eq.(17) a posteriori(cf. Sec. Il B: the modes that At this point we introduce the approximation of discard-
proylde the best confmement of the field in a tllghtly focuseding the divergence condition, so that we merely have to con-
region around the focal point are the ones with-0. For  qjger noundary conditiond6) with one and only one of the

these, the different vector components decouple rigorouslyy .. fia|d components nonzero. Then E2@) is separable
and the scalar program is exact. These 0 modes are par- in » and ¢&. We shall return to the details of the solution
ticularly significant because they provide the best confine-

ment of the field in a tight focal volume. This is the para- proceFiure n Sec. IV; for now it is sufficient to give the
mount aim of the experimental dome structure. result: Denoting the separation constant ®ythe solution

In addition to this exact result, the more transparent sim&@" be written in the form

plified problem allows us to evaluate the stability of the sta- _ _

tionary states of the field in the parabolic cavity with respect Q=F(kB.OF (k=B 7). @9
to deviations from the confocality condition—a deformation whereF (k, 8,£) obeys

that can readily occur in the course fabrication. This will be

addressed with the help of the ray picture in Sec. VII, and the n’/4 k2

ray trajectories themselves are independent of whether a vec- EF"+F'+| — T + e E+pB
torial or scalar field is considered. Since the exact nature of

the deformation is unknown, it is necessary to make modethe functionsF(k, 8,£) andF(k,— 8,7) appearing here are
assumptions and parametrize the deformation in some wayo|utions of this differential equation with the saandn,
Although the range of possible behaviors explored withingyt with sign-reverseg, and hence their functional depen-
our model can be argued to be generic, we lose at that poifence org and 5 will be different unlesss=0. Without loss
the ability to predict accuratey all the individual modes of o generality, we can assumeo be non-negative, because it

the specific sample. The error incurred by this fundamentag‘ppears in the above equation onlyrés The solutions that
uncertainty about the precise boundary shape is larger thaqy ot diverge at=0 are of the form

the error made by adopting the simplified boundary condi-

F=0. (26)

tions, and hence the latter are warranted on physical grounds. kemenons (ML 1B i
The consistency of these arguments is proven in Sec. VIl F(k,3,&) =272\ TNt 1;—iké],
where we find that the only modes whidan in fact be (27)

reliably predicted for a large range of possible deformations

(because they are structurally stable against the emergenceghere M (a,b,z) is Kummer's confluent hypergeometric
chaog are the ones with lown (or angular momentum in the  function. The functionF as written here is in fact real, be-
classical picturg concentrated strongly near theaxis. For  cause of the Kummer transformatih3]

these modes one can set approximataly0, E, =E_ and

E,=0, so that Eq(17) becomes valid.
M E—a,b,—z

b
:e‘ZM(EvLa,b,z), (28
C. Wave equation in parabolic coordinates

Having discussed the boundary conditions, we now prowhere we sea=ig/k, b=n+1 andz=iké&. Appplying the

vide the solutions to Eq(15). In order to find a system of theorem then yield& (k,8,&)=F(k,B,£)*.
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The separation constar® and the wave numbek at  can also be made to vanish&t =0, if one or both of the
which to find the mode are still unknowns of the problemfunctionsF(k,,£&) andF(k,—3,7) are zero at the origin.
that have to be determined from the boundary conditions. However although we can find solutions for arbitramy

The first constraint we can write down is with a tangential electric field that is symmetric under reflec-
tion at the focal plane, we can only attempt to concentrate
F(k,8,2f)=0 (29 the field near the focus, always with a node at the focal

epoint, dictated fom#0 by the phase singularity at the ori-
gin. Form=0, there is the residual angular momentum bar-
rier due ton# 0, and thus even in this simple case—contrary
So our expectation from quantum mechanical analog—the
“ s-wave” solutions have a vanishing field at the focus, as a
Sonsequence of the vector nature of the field.

to enforce vanishing tangential field on the parabolic surfac
In the two-dimensional plane spanned by the unknoyns
and k, this single equation defines a set of curves. Th
boundary condition on the focal plane requires that be
symmetric under reflection, i.e., invariant under . For
E,, on the other hand, one needs odd parity. In order t
construct such solutions with a well-defined parity, we have )
to form linear combinations E. Particular case: fundamental s wave
The casen=0 can be discussed in more detail because it
E=F(k,B,O)F(k, =B, m=F(k,—B,EF(k,B,7), permits simple analytical expressions for the wave solution,
B0 jfwe specialize further tgg=0. In this case, the solutions in

where, in, addition, Eq. (27) simplify to

F(k,—B,Zf)EO (31) F(k,o,g)Od(g,lzkf)ln/z, (32)

The set of curves parametrized by this constraint will inter-

sect the curves defined by EQ9) at certain isolateghoints ~ dropping prefactors that are absorbed in the normalization.
in the 8-k plane. By finding these intersection points, we Herel is the modified Bessel function.

determine the quantized values @fandk corresponding to As was already noted below E(L5), E.. is linearly de-
solutions of Eq(23) which satisfy the boundary conditions. pendent in the special case=0, so that we can in particular

It is not clear at this stage of the discussion how many interchooseE, =E_. ThenE,=0 andE,=E_= E(b/ﬁ. We
sections there are, or even how the curves defined by eac¢hus obtain the TE field by setting

equation separately will look. Before we analyze the differ-

ent branches of these equations and identify their intersec- Ey=Q=F(k,0£€)F(k,0,7), (33

tions based on asymptotic methods in Sec. IV, it is useful to . - "
discuss in more detail the consistency of the fields thus ob@S IN EQ:(25). This already satisfies the condition of symme-
tained. try with respect to the focal plane, without having to form a

superposition of the type of Eq430). Moreover, it satisfies
the condition of vanishing divergence, as can be checked
with Eq. (17).

The main experimental purpose of the cavity is to concen- With n=1 (for E, atm=0), Eq.(32) can be rewritten to
trate the field near the focus as much as possible. Since omhtain
always ha€s,=0 there, it remains to discuss the behavior of
E.. in the focal region. Because of the “angular momentum E.=0
barrier” on the right-hand side of Eq23), the solutions- E =0
given in Eq.(27) attain a factor£™?, which suppresses the
field near the origirE=0 whenn# 0. The Kummer function
itself goes toM =1 at (=0, so that the only way of obtain-
ing a nonvanishing field at the origin is to se£0 in Eq.
(26). This means that the angular momentum quantum numgnd
ber must in fact satisim=1 for E_. or m=—1 for E,
according to Eq(24). However this leads to a contradiction: ( _ \/E _
if the field is nonzero at the origin, then because of the azi- Be=—iEo— — P sin(k¢/2)cogk7/2)
muthal factor exp€i¢) one faces a singularity &= »=0 in 7V
which the field is indeterminate. Therefore, therends pos- B={ \/ﬁ\/T 1
sibility of obtaining a nonzero field precisely at the focus of B,=+iEo——\/ 7= cogké/2)sin(kn/2)
the cavit K &t \/;

y.

For m= *1 there are still solutions of E23), but they \ B,=0.
must involve solutions of E¢23) in suitable linear combi- (35
nations such as to yield a vanishing field &t »=0. We
have the freedom to combine eigenstates of the wave equa- The resonance condition is obtained from the boundary
tion linearly at the same wave numbetyielding a station- ~ condition[Eq. (6)] on the parabolic dome a@t=2f as
ary state with monochromatic time dependen&@st we use
the real-valued solutions in E€R7) to form a superposition K = NZ N=12 (36)
of the type Eq(30) with a plus sign. Despite its symmetry it N f’ e

D. Behavior at the focal point

m
I

1 (34
E,=Eo—— sin(k&/2)sin(ky/2)

kVén
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A relatively simple visualization of these modes can be
obtained by expressing the electric and magnetic fields in
cylindrical and spherical coordinates which are more famil-
iar. It can be verified using the relations between these coor-
dinates to the parabolic variables that E8¢) then takes the
form

E,=0
- E,=0
E= 1 (37) |
Es= Eog(cos( kz) —cogkr)),

FIG. 4. Cross-sectional view of the unfolded cavity with two
closed, bowtie-shaped ray paths going through the common focus
and the corresponding magnetic field is of the bounding parabolas. Families of such rays can be thought of
as constituents of thewave in Eq.(34).

. Npe 1 .
B,=1Eo— — r—(z sin(kr) —r sin(kz)) This will be pursued in Sec. IV. The actual intensity distri-
p . . - . :
- _ bution of thesen=1 states in the cavity will be plotted in
B= B _ip. VM€ sin(kr) (38)  sec. VB, where we can compare their spatial patterns with
z 0k r those obtained for larger, in order to justify our claim that
B.—0 s-wave modes provide the best focusing.
d)_ .
By splitting the various terms appearing here into two con- IV. FINDING THE MODES WITHIN THE
tributions, the electromagnetic field can then be considered SHORT-WAVELENGTH APPROXIMATION

as the superposition of two fields:
The first field is polarized along, andB,, and can be
expressed in cylindrical coordinates as

Having seen that even the long-wavenlengtivaves in
our cavity can be interpreted as standing waves arising from
counterpropagating ray bundles and their accompanying
E, E, wave fronts, we now turn to a more quantitative eikonal
Efﬁ}):k—cos(sz) and Bgl):i\/ﬁk—sin(sz) analysis. Such an analysis can provide accurate starting
NP NP (39 points for a numerical search of the exact wave solutions,
which are determined by finding intersection points between

The second field is polarized in spherical coordinategy(  the families of curves29) and (31) in the plane ofg vs k.
9) along the directions of the azimuthal and polar angies, Such semiclassical considerations, based on the short-

and 6, according to wavelength approximation, are an important first step be-
' cause there are, as we shall see, infinitely many intesections
i between the sets of curves determining the exact solutions,
E@)— Eo cogkyr) and B(Z)zi\/_ Eo sin(kyr) d desi ¢ find 9 )
_— b ne —_— and one desires a means of finding them in a systematic way,

¢ sing  Kkyr sing  kyr

(40) labeling them by “quantum numbers,” giving the number of
nodes in the field along the coordinate lines foand 7.

Here we have used the substitutipr r sin @ in the denomi-  Beyond this very practical use of the short-wavelength limit,

nators. we also want to establish a physical understanding of the
The first field,[Eq. (39)] corresponds to cylindrical stand- esonator modes that allows us to predict how they depend

ing waves with a phase variation along theirection, while N changes in the cavity shape. This aspect of the ray picture

the second fieldEq. (40)] corresponds to spherical standing Will be expounded upon in Sec. VIil

waves with a phase variation along the radial direction. This

configuration is reminiscent of what is expected from a A. WKB approximation and effective potential

simple geometrical optics argument in which a ray bundle

. . The equation to be solved is E@6), an ordinary second-
emerging from the focal pom_t can propagate °“‘V.Va.rd as Brder differential equation, where the angular momentam
spherical wave. Upon reflection on the parabola it is con- '

; T o enters as a parameter trough the constaii/e are looking
verted into a cylindrical wave, which in turn can counter- for solutions F(£) which satisfy the boundary condition
propagate back to the focal point after being reflected on y

planar mirror and a second time on a parabola. In an un- (21)=0 and are not singular =0. The standard short-

i . . wavelength approach to be employed here is the WKB ap-
folded double paraboloid, the ray trajectories are of the type roximation [14]. After division by £, Eq. (26) takes the

shown in Fig. 4. It should be noted that these two partialp
. Lo - for
waves are not physical when taken individually, because in
both cases the electric field diverges along the axis of the
parabola. The divergence, however, cancels out when the - 44z
superposition of the two partial waves is considered. So far dg2 £dé 4
we have only drawn this ray interpretation from a particular
decomposition of the exact solution; the question is how arfor subsequent analysis it is convenient to introduce a di-
bitrary this decomposition is, and what we can learn from it.mensionless coordinate

d’f  1df 1( 2 4B TN b
£ g)l0=0
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If Z>0 andn=0, then no inner turning point exists. This
inner turning point, in classical mechanics, is the point where
the momentum in th& direction smoothly goes through zero
as it changes sign, and hence the probability per unit time of
finding the particle becomes infinite. In the ray dynamics,
this phenomenon gives rise tocaustic This will be dis-
cussed further in Sec. VI.

The outer turning point of this classical picture is deter-
mined by the Dirichlet boundary condition at the parabolic
mirror, which in the new coordinate is located at

FIG. 5. Solid curve: the effective potentiad(u) for n=3, §1=2f=u;=y2Kkf. (48)

showing the classical turning pointg (vo) whereZ (—2Z) inter- ) . . .
sects the effective potentidl (cf. the dashed lingsThe ranges of It IS the boundary conditiorf(u,)=f(y2kf)=0 in which
classically allowed motion for the two degrees of freedomnd the short-wavelength condition is contained: we assume that

with energiesZ and - Z are indicated by the shaded badark for ~ at the outer boundary the wave function has the WKB form
u, light for v). The outer turning points at v = \2kf act as a hard  LEd. (46)], which requires that the dimensionlesze param-

wall whose position depends dn eter satisfies
u=\/k_§. (42) x=2kf>1, (49
constant turning pointu, of the effective potential. All steps discussed
above forf(£) apply analogously to the variabigappearing
48 in the product ansat@ [Eq. (25)], if we reverse the sign
Z=-- (43 everywhere and replaaeby the variable
the following equation is obtained: v=k7. (50)
d?f 1df 1/n2 ) Then the inner turning poind, for this second degree of
_Q_GEJFZ 2 f(uy=2f(u). (44  freedom is obtained as
This has a form similar to the one-dimensional Sehro _ B ) VA
dinger equation of quantum mechanics, except for the first V(vo)=—=Z=v0= n+ ZJF 2 (52)

u-derivative which makes the kinetic energy operator non-

self-adjoint. This term appears in the radial equation of ¢y—rpa values ofu, and v, determine the distance of closest

lindrically symmetric problems, but does not affect the aP-approach to the axis.

plicability of the WKB approximatiorj15].

The WKB solution requires us to find the classical turning o N

points in the potential appearing in this equation, with B. Quantization conditions

playing the role of the total energy. This effective potential ~ Under this condition, the semiclassical determination of
the eigenfrequencies proceeds by applying the Bohr-
Sommerfeld quantization to the action integral for one period

(45) of the motion in the effective potential. One round trip con-
sists of the path fronug to u; and back tauy. The quantized

1(n?
V(U)ZZ ?—U

is a superposition of an inverted parabola and the centrifug&iction is therefore
potential determined by, giving rise to the solid line in Fig.

u
5. Using this together with the ansatz J(Z,x;n,v)EZJ l\/Z—V(U)dUEZW (52
Uo

L3
Vz.

1
f(u)~ o(0) P p(u)=VZ-V(u), (46  The integerv=0,1 . .. is thenumber of nodes of the wave
function in the potential, and the constant 3/4 takes into ac-
approximate solutions are found by imposing the boundangount the phase shifts of and 7/2 at the outer and inner
conditions at the turning points. turning points, respectively. In other words, the above quan-

There is only one possible turning point corresponding tdization condition is an approximate way of writing the
the closest approach to the origire 0, which is given by phase-shift requirements that hold at boundaries and caus-
tics, using the approximation that the wave propagation itself

72 7 is described by a wave front whose phase advance i
V(Ug)=Z=Ug= A2 -2 (47) given by the function.
4

2 The result of the integration is found to be
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Z XPHZx—n?+x+2Z/2

J(Z,x;n,v)={x*+Z x—n“+ =In

2 Jn?+7%/4
- Zx—2n? T
—n| arcsin————+ —
X\Z%2+4n?2 2
=2 +3 53
=2m| vt (53

This is an equation for the two unknowi#sandx, i.e., for
the rescaled separation constant and size parameter. It
therefore analogous to ER9). The integerv uniquely la-
bels all the allowed solution, of Eq. (44). This is an im-
portant difference to Eq.29): there, the functiorF in fact
has infinitely manybrancheghat satisfy the equation, which,
however, are not labeled explicitly. The great advantage of
Eq. (53) is that these branches are explicitly enumerated by
v, SO that fixing this index selects exactly one curve in the
Z-x plane instead of an infinte family.

As in Eq. (25), the field consists of products of the form

Q=f,(x,Z,u)f ,(x,—Z,v), (54)

with v defined as in Eq(50). The two functionf, andf, L Y A
have their analog in the exact solutior®f Eq. (26), corre- 5 > 4 6 8 10 12 14
sponding to the branches &flabeled by» and u, respec- x X

tively.

We then form combinations the form of E(B0) to en-
force the required symmetry with respect to the focal plane
The semiclassical WKB quantization for the functibp(x,
—Z,v) provides a second equation of the form of Es):

FIG. 6. For the first six values af, the graphical solution of the
simultaneous equation$3) and (55) can be read off from the in-
tersections of the gray curves. The dashed black curves show the
analogous graphical solution of Eq29) and (31). The exact and
semiclassical curves are almost indistinguishat@gcept forn
3 =0), attesting to the striking accuracy of the former even at the
J(=Zx;nu)=27(pu+ 3). (59 smallest possible size parametersAll plots can be continued to

o . Z>0 by reflecting at the axi2=0. The WKB curves with positive
These two quantization conditions play the same role as Eqgjope pelong to Eq(55), and the falling lines are created by Eq.
(29) and(31): the intersections of the curves parametrized by(s3). They are labeled starting from the leftmost by,»

them determine the quantized valuesZofnd x. However, =012, ...

the WKB method affords a great simplification: by fixing the

branchesy and u, the intersection of the two resulting in Eq. (27), and forming the proper linear combinations of
curves is uniquely determined. To illustrate this situation, inthe form of Eq.(30).
Fig. 6 we show how the lines defined by the above two

equations traverse tt#ex plane. Only a small portion of this

plane is shown, emphasizing the behavior of the semiclassi-

cal results at smalk where their accuracy should be at a  This will now be carried out for the lowest-lying modes as
minimum. Comparison with the exact families of curves obtained from the intersections in Fig. 6. Any given value of
shows, however, that the WKB results are excellent even it can have a different meaning for the intensity distribution
this long-wavelength limit. Note that, by symmetry, intersec-in the azimuthal direction, depending on which case in Eq.
tions occurring aZ=0 are always between curves with the (24) we choose to considen=m=1 for the modes. Since
same branch index= . All curves shift to largex with  the azimuthal field variation is triviak exp(me), we wish
increasingn because of the larger centrifugal barrier, pushingto restrict our attention to the mode profile in the plane
the classically allowed regions of the effective potential inspanned by andzin cylindrical coordinates. The variable

A. Mode profiles

Fig. 5 outward. governing this property ig, notm. Thereforen is used here
to classify the mode profiles.
V. EXACT SOLUTION EOR THE MODES AND THEIR As in the previous sections, we shall take the focal plane
FIELD DISTRIBUTION to be the symmetry plane of a double paraboloid, and plot

the wave fields in this unfolded cavity. This is done in view
Once the allowed combinations @ and x—or equiva-  of the subsequent discussion, where we shall establish the
lently 8 andk—at which the boundary conditions are satis- connection between these modes and the ray dynamics.
fied have been found, the problem of finding the modes iSome wave plots are shown in Figs. 7 and 8. Note that the
solved. For example, we can now plot the intensity distribu-casen=0 does not appear among the solutions listed here
tion of each mode by using the quantized value@andk  because it corresponds to wave fields that do not vanish on
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Re=<157- 16128819:2~ 03 n=Tix~ 125664 Z~0; ; However, the interpretation oft and v as the number of
nodes in the parabolic coordinate directions cannot be car-
ried through in all of the plots. We will return to this problem

2 in Sec. V C.
In order to achieve the best possible concentration of

P — S ——— fields near the focus, the most promising candidates are
modes withn=1. Among these, the patterns shown in Fig. 7

indicate that the states @t=0 in turn show the highest in-

tensity near the focal plane. These are precisely the funda-
mentals waves we discussed in Sec. Il E, with the wave-
numbers quantized according to E§6), which for the size

FIG. 7. Four states with=1. The grayscale indicates the mag- parameter reads
nitude of the electric field for the mode€ () of the confocal
double paraboloid, and the highest fields are shown in black. The

vertical axis isz, and the horizontal axis is the axial distanee his i it which b d he WKB
Increasingx means a shorter wavelength and hence more nodaT IS Is an exact result which can be compared to the

lines (white). The size parameter is quantized according to(gg, ~ duantization condition in E53), with Z=0 andn=1. The
with N=1 and 2 in the top row, anl=7 and 14 at the bottom.  latter actually has a more complicated form,

xn=2k,f=2mN. (56)

the z axis and hence are irreconcilable with the finite angular W2—1+ arcsinl =2m(v+1), (57)
momentumm=*1, as discussed in Sec. ll)D X

If we look at only the left column of Figs. 7 and 8, it is
apparent that all states witA=0 look similar, as do all butto second order in the small quantity This is identical
states withZ#0. A similar observation can be made in the t0 Ed. (56) with N=»+1. This confirms the observation
right columns of the figures. Comparison to the intersectingnade in Fig. 6 that the numerical agreement between exact
lines in the graphical solution, Fig. 6, shows that states witRnd semiclassical solutions is good even for small quantum
the same nodal pattern indeed result from the crossing of theumbers.
same pair of lines—Ilabeled by the sameand v, only for
different n which pushes the intersecting lines to higker B. Focussing and the effective mode volume

In order to evaluate the field enhancement that is achieved
in the fundamental TE modes discussed in Sec. Il E and
shown in Fig. 7, it is necessary to examine the distribution of
the electromagnetic energy in that mode. The energy in a
parabolic cavity of focal lengtlfiis

n=1,x= 9.35647, 7 = -2.32266: n=1,x= 12.362,Z = -4.55183:

:

n=2 x= 7.66341,Z=0.: n=2x= 140312,Z=0.: 1 (¢é=2f (n=2f fd=27] ¢ ) ) )
U=7 §(|Eg| +|E, |2+ [Eg4l*)
e=0 Jy=0 Jo=0

1 E+ 7y
+ o (B2 8,18 | 5 e dnas,

=

n=2,x= 10.7729, Z = -2.75601 : n=2,x= 13.7835,7Z = -5.23374 :

(58)

which for the fundamentalstwave TE modes[Eq. (34)]
gives

:

n=3,x= 898682,7Z=0.: n=3,x= 1545057 = 0.:

where the value of the integral can be evaluated numerically.

N= B x= 12.1419,7 = -3.10069 : =3 x= 18.5010,7  -254370 - For the experimentally realized cavity described in Sec. |
kf=14, so that the value of the integral is 2.527. The
intensity distribution for this mode is shown at the bottom
right of Fig. 7 (notex=2 kf). To examine the energy distri-
bution in the cavity, we can evaluate the energy that is con-
tained at each lobe of the standing wave of parabolic wave
FIG. 8. The modes shown here do not follow the simple law offront that corresponds to the mode. We note then that the
Eq. (56), but were obtained numerically. With increasing centrifu- first lobe, corresponding to a parabolic wave front of focal
gal barrier, labeled by, the forbidden region around theaxis  lengthf,=\/2, contains 48% of the total energy; to see this,
grows outward. replace the integration limit in Eq59) by 7. This lobe

, i [k sin?(x)

U=€eE;—
%4k2 Jo X

dx, (59

[
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occupies a physical volume &= 7\3/4, whereas the vol- N =1; X'= 9i35647,Z/= ~2/322667 M=%~ 12362, = -4i551887
ume of the overall cavityy =21 f3, is 2744 times larger.

This underscores the very large confinement of the field
that occurs in the vicinity of the focal point, and points to the
possibility of observing a very large enhancement of sponta-
neous emission into this mode. The fraction of the total en-  n=2x= 10.7720,z = -2.75601: n=2 x= 137835 Z - -523374
ergy contained in the first lobe of course reaches 100% if the
smallest possible cavity witk f= 7 is considered. However,
the size achieved in our present sample already approaches
the optimal conditions if one takes into account that enhance-
ment of spontaneous emission requires not only a small ef- | _; , _ 151410 2 - -3.10080- n=3 x= 185019, Z = -2.54370
fective mode volume but most of all a small local density of .
states[16]. The averagedensity of modes in an arbitrarily
shaped electromagnetic resonator of voluwhés a funda-
mental quantity in the theory of blackbody radiation and was
derived by Weyl[17]:

-

n=38x= 151678, Z = -5.79921 : n=3 x= 18.1398, Z = -8.37833:

2
PWeyI( k)~ _ZV' (60)
a

. . . . . " =3,x= 341 , Z=-8.72419: =4,x= 73. ,Z=0.:
Note that this can also be written in the physically intuitive e — 872 ? R 729 °

form

2 2d \Y
Pweyl(K)~ 37" Vo (61

FIG. 9. Mode intensities as in Fig. 8, but without performing the
symmetrization prescribed by the focal plane boundary condition.
The WKB quantum numberg (andv) can be read off by counting
the number of wave function nodes parallehd perpendicularto

indicating that the number of modes in the interdld is
proportional to the number of additional volume quakta

that fit into the_ given volume/ whenk increases t&+ dk. the reference ling.. Modes in the first three rows correspond to the
Thelocal density of states in the focal volun\g can there- oy metrized versions of Fig. 8. In order to illustrate the approach to
fore be interpreted to be the same as the total density gf,e short-wavelength limit, additional modes are shown for which

states in a small (_:avity of volum€=Vy. This, in turn, is  the formation of caustics is apparent in the high-intensity ridges
roughly the effective mode volume for the fundamergal (plack bordering the classically forbidden regiofvehite).

wave in our structure. From this we conclude that the spon-
taneous emission enhancement should be close to the maxi-
mum possible value even though our cavity is not of the
minimum possible size. This is one of the central advantages In order to arrive at the solutions shown in Fig. 8, we
we were looking for in the parabolic cavity design. In this started from the semiclassigahort-wavelengthapproxima-
discussion we have assumed for simplicity that @héactor  tion and then refined the quantiz&dandk further by apply-
of the modes under consideration is fixed, independent ofg the exact modal conditions. However, the question arises
size and quantum numbers. This severe simplification will bénow the quantum numberg and » which label the semi-
removed in Sec. VIII. classical solutions can be visualized in Fig. 8. The answer is
In higher order modes witm>0, the centrifugal barrier that the symmetrization procedure obscures this identifica-
prevents the field from approaching the focal point. This im-tion. What happens can be understood if we ignore the parity
plies that these modes will have a larger effective volumerequirement and plot the wave fields in the simple product
and, correspondingly, a smaller enhancement of the spontéerm of Eq. (25).
neous emission rate. An added difficulty concerning the The symmetrization performed according to EHGO),
higher order modes arises from the limited experimental conwith A=B, introduces no change whatsoever if the separa-
trol over the exact cavity shape. As discussed in Sec. VllIfion constant ig8=0. Therefore, the intensity profiles of all
small deformations of the cavitymodeled as deviations modes withZ=0 in Fig. 8 are the same before and after
from confocality result in chaos, leading to a loss of con- symmetrization. However, the wave patterns acquire a quali-
straints on the possible regions of phase space which can batively different and simpler form if we desymmetrize the
explored. This further increases the effective volume of theseemaining states. This is shown in Fig. 9. The nodal patterns
modes. The enhanced spontaneous emission into the fundaew appear in a regular fashion along the coordinate lines for
mentals wave implies that this mode will also exhibit a large u andv (or £ and %), and their number along these lines is
gain and, correspondingly, a low lasing threshold. The preuniquely determined by, and v.
liminary conclusion of this section is therefore that a mode By symmetrizing a state such as the one shownrfor
with low angular momentum and small(or B8) will be the =3, k=18.59, andZ=—2.54 in Fig. 9, the field shown in
dominant mode in a laser of parabolic geometry. the desymmetrized plot is added to its reflection at the focal

C. Caustic structure in the wave solutions
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plane, thus allowing some nodal lines to be “filled in,” as n2 n2
seen in the corresponding state at the bottom right of Fig. 8. p5+ p3+ 7l —+ —2—u2—uz) =0. (64)
The desymmetrized waves in Fig. 9 exhibit nodal lines pre- us v

cisely along lines ofyp= const oré=const. In addition to the

simple nodal structure, we also observe a clear segregaticlﬁwe divide this by (1+0%), the result is

between regions of negligible intensity and regions of oscil- 2, 2 2

: NS petp; 1[ n
latory field, with dividing lines between them that become u Fv, - —1|=0: (65)
more and more pronounced as the size paramete? k f u’+ov? 4\ u?

increases. These are the caustics, which in fact accumulate ) o )
an increasing amount of intensity as the short-wavelengtfis can also be interpreted as arising fronmew Hamil-
limit is approached. The caustics follow parabolic coordinatdonian

lines as well, as is apparent from the last row of Fig. 9. The A 5

field atn=3, x=34.16, andZ= —8.72 is bounded from be- H= Put Py N 1n (66)
low by a broad inverted parabola, and excluded fromzhe ul+uv2 4 yp?’

axis by a steep upright parabola. The intersection of both

parabolas forms the caustic. In the modenat4, x=73.73, by requiring

andZ=0, both the upright and inverted bounding parabolas L

are symmetric as we expect fd@=0. H(pu,p,,u,0)=73. (67)

The Hamiltonian in this form is analogous to the wave equa-
VI. CAUSTIC STRUCTURE IN THE RAY PICTURE tion in parabolic coordinatd€qg. (23)], where the Laplacian
In this section we will elaborate on the relation betweeniS divided by the same scale factar’(+v?) that accompa-
mode structure and ray dynamics, as a basis on which we cdli€s the conjugate momenta here. One can now use Hamil-
predict the effect of shape perturbations on the mode strudon’s equation of motion to replace momenta by “veloci-
ture. The caustic patterns revealed in Sec. V, by the deconiies.” the definition being
position into the product states as in E&5), are a direct

consequence of the classical turning points in the effective U= ﬂ, D= JH _ (69)
potential V, [Eq. (45)], for the motion along the& and 7 JPy P,

directions. The distinction between classically allowed an his lead h bstituti

forbidden regions gives rise to the regions of oscillatory and' 'S '€ads to the substitution

vanishing fields in Fig. 9. The effective potential has, so far, 12, o 12, o

been discussed only as an auxiliary concept that proved con- py=3z(U+vu, p,=3z (U +v)v, (69)
venient in the WKB_treatmer_ﬂ; its relation to the behavior OfWhiCh brings Eq(67) into the form

the rays of geometric optics is, however, well known. For the

sake of a self-contained presentation, here we convey the n2

idea behind the general eikonal theory by showing how to (U240 (L2402 + =1. (70)

. . A . 2.2
derive ray equations from the one-dimensional separated u‘v

wave equationg,Eq. (26)]. The argument is nonstandard in ) . ) )

the sense that Eq26) is based on the full vectorial wave Reverting to cylinder coordinates, the above equation be-
equation(i.e., with polarizatiof, and we therefore shall find €0Mes

that for a given angular momentum, slightly different ray 5

trajectories have to be considered depending on polarization. K2(p2+722)+ n 1. (71)
This is because the quantity entering E26) is n, not m. 2

Here we used the definitions of the coordinates in Egp.
and(42). To examine what this equation has to do with the
Inserting the WKB ansatZEq. (46)] into the wave equa- ray dynamics, we now take the ray-picture point of view.

tion for the separated variablg&g. (26)], one finds to lead-
ing semiclassical order thatmust satisfy the equation B. Geometric optics in cylindrical coordinates

pﬁ+V(u)=Z or (similarly) p5+V(v)= ~Z. (62 If we consider the three-dimensional motion of rays in a
double paraboloid of the shape in Figbg their propagation

. . . between reflections at the parabolic walls will of course fol-
We can interpret this as the Hamiltonians of two decoupled,,, straight lines, and hence there is no place for any

linear systems, and add them to obtain the Hamiltonian foEoordinate—dependent potential However, in order to com-

the combined system: pare the ray dynamics to wave function plots in the
plane, as shown in Fig. 9, we must project the ray motion
H= pﬁ+ pf+V(u)+V(v). (63) onto this_ plane as well. In the_ wave analysis, this projgction
was achieved by using thetational symmetryf the cavity
around thez axis to eliminate the azimuthal coordinage
Ihe trajeCtorieS we are |00king for then SatiSfy the equatiorﬁ'om the prob'em in favor of the angu|ar momentum quan_
H(py,p, U,v)=2Z—2Z=0, or written out: tum numbem.

A. Ray equations from the WKB approximation
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In ray optics, we can do the same: rays can be classifiedicture introduced here is equivalent to the motion described
by an angular momentuin, because of the axial symmetry. by the WKB effective potential, with the important identifi-
To see this, we first define,. A ray trajectory is a curve cation of Eq. (78
consisting of straight line segments between each reflection. Besides Eq(75), the only other equation that is needed to
If we parametrize this curve agl), wherel is the path completely determine any ray trajectory from its initial con-
length along the ray from some arbitrary starting point, therditions is the law of specular reflection, which can be formu-
Ir(1)|=1. Here and in the following, the dot represents thelated with the help of the outward normal unit vectoat the

differentiation with respect to arc lengtd/dl. In cylinder ~ reflection point as
coordinates, ¢, andz, we can decompose this as . . .
o . . Mreflected™F —2U(U-T). (79
r=pe,+ze+roe,. (72 .
This corresponds to a reversal of the normal component of
Between any two reflections, this is a constant unit vector injere we can see explicitly that reflections do not affect the
the direction of the ray. With this, the equation for a stralghtComponent of in the direction ofe,,, since the normali has

line segment can be written, in general, as no e, component as a consequence of the axial symmetry.
This latter fact also means that we can simply dropehe
component from Eq(79) altogether. Therefore, we now de-

whereL is a constant analogous to the angular momentum O?hne the two—comgo?ent \;ﬁctors in thep C[I)_Ian(tahby dropping i
classical mechanics. e e, components from the corresponding three-componen

Because of the rotational symmetry around ztais, the ~ Vectors. Thus becomes
azimuthal unit vectoey at the point of reflection is always

rxr=L, (73

tangent to the surface. Therefore, a reflection does not : : p
. i ) v=pe+ze=|.]|, (80)
change the component ofalonge,, so thatp¢ is continu- P 7
ous. Since the ray curve is itself continuous everywhere, so
is p(l). Hence the quantity and, similarly,
L,=p?¢ (74 u=u,e,+u,e,. (81)

is also continuous at each reflection. But this is just zhe |n this two-dimensional space, the specular-reflection condi-
component ot in Eq.(73), as can be verified by performing tjon retains the form of Eq79):

the cross product there. Thugis a constant between reflec-
tions, which together with its overall continuity implies that Vieflected=V— 2 U(U- V). (82)
it is a conserved quantity for the whole ray trajectory.

Using Eq.(74), the fact that is a unit vectoEq. (72)],  This is the reason why we can call the motion in the
can be recast as plane abilliard problem

2
C. Curved ray paths in the centrifugal billiard

We know that the trajectories between reflections are

.Ostraight lines, so that the componentsroin the Cartesian
bordinate frame are constant for each segment. In our new
z-p frame of reference, theaxis is the same as the Cartesian

one, so that we still have,= z= const between reflections in

almost identical to Eq(71). We only have to redefine the
path length variablé to make it dimensionless, by introduc-

in
9 Eq. (80). However, the same doe®t hold for thep compo-
s=kl, (76) nent ofv. Instead, from Eq(75) we obtain from
to obtain L, L2 "
p+ —2=1—z =const. (83
dp ‘ dp ; p
a - &1 ( 7)

If we multiply this by 4p2, it can be written as a differential
H 2.
for the derivatives, and furthermore interpret equation forp™

d 2 . .
L= (79) (apz) =4p?p?=4(1-2%)p?-4L7. (84)

Then Eqs(71) and(75) become identical, if we interpret the The solution is thap?(l) describes a shifted parabola,
dot in Eq.(71) to meand/ds. The scale factor of the “time” . _
variable parametrizing our trajectories is irrelevant for the p?(1)=p3+2(1—1;))\(1—2%)p?— L2+ (1—-1)%(1-2?),
shape of the paths, so that we can conclude thatray (85
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there has also been a motiongnwhich does not necessarily
amount to a full rotation around theaxis. Hence this peri-
odic orbit of the centrifugal billiard is not in general a true
periodic orbit of the parabolic domef. Fig. 13e)]. How-
ever, we can reverse this statement and conclude that any
periodic orbit of the three-dimensional problem must also be
periodic in thez-p plane. This cautionary remark concerning
the interpretation of Fig. 10 is relevant if we attempt to in-
terpret the actual modes of the original cavity in terms of a
naive physical optics approach: one might think that a quan-
FIG. 10. Al starting conditions for the rays i), (b), and (c) tized mode has to be associated with ray paths that form a

amount to the same angular momentuuy=0.1f, but prescribe  l0sed loop, and in this way “reproduce” themselves. How-
different angles of incidence with respect to the boundary, and dif €Ver, a comparison between F'QS_- 9 and 10 reveals that peri-
ferent positions of impact(a) shows two different orbits in the 0dic orbits seem to play no special role for the mode struc-
same plot; both are periodic and symmetric in this projection ontdure.
the z-p plane, differing only in their starting pointgb) shows a What shapes the modes is not any single periodic ray
single path, which is quasiperiodic because it does not close oorbit, but the caustics as they appear in Fig(b1910(d).
itself even in this projection. Instead, it densely fills a region of The spatial distribution of the ray trajectories exhibits a clear
space delimited py a caustic whose shape is given by the palrabo'i‘%rrespondence with the modal intensities shown in Fig. 9,
(gray).. The caustic beqom.es more.asymmetm(ahand (@, each particularly in the shape of the caustics. This is most con-
of which shows a quasiperiodic orbit. The angular momentufd)in N . .
A ; . . vincing for the two examples in the bottom row of Fig. 9,
is L,=0.6f, leading to a larger forbidden zone around thexis. .

where the wavelength is shortest; The statenat3, x

wherepi2 is the integration constant and specifies the value of_ 34.16, andZ=—8.72 should be compared 1o Fig. (&)

p?(1;) at the starting pointt; of the ray. Since, furthermore, and the refiection-symmetric mode with=4, x=73.73, and

. i funci 1 (7= 0 for definit Z=0 finds its counterpart in Fig. 16).
IS a finear tunction o (_z—cons), or definiteness we can o ;stics are immediately generated when we follow a
fix the initial point is to lie on the focal plane, and substitute

single quasiperiodic orbit, but not so for a periodic one.
: However, periodic orbits occur in infinite families which,
I=1(2)=2/z (86)  when plotted together, again fill a region of space bounded
by a caustic curve. The two members of the family shown in
to find that Eq.(85) describes a curved paf{z) in thez-p  Fig. 10(a) are obtained by launching a ray from the focal
plane. The curved nature of this trajectory is a direct consepjane, perpendicular to it, differing only in the radial distance
quence of the centrifugal potentiaf/p? in Eq.(75), and we  , of the launch. All other siblings of the examples in Fig.
would recover straight lines, i.e., a linear variationggf),  10(a), combined, would create a picture almost identical to
for L,=0. This is why we refer to this problem asantrifu-  the one generated by the single quasiperiodic orbit in Fig.
gal billiard [18]. For a visual example of how curved traces 10(b)—the latter is in fact the result of only a slight deviation
arise from stright-line trajectories, the reader is referred tdrom the initial conditions chosen in Fig. (&), with the
Fig. 13e), which will be discussed in Sec. VII. result that the orbielmost but not quite, closes in on itself
An example of the ray motion in the special case=0 is  after one round trip, and continues to fall short of closing
already displayed in Fig. 4, showing no curved trajectoriedtself after each subsequent round trip as well. The conclu-
because there the-p plane is indistinguishable from the sijon is that from the point of view of the caustic structure in
Cartesiare-x plane. ForL,# 0, curved ray trajectories in the our system, there is no qualitative difference between peri-
z-p plane are shown in Fig. 10 for four different initial con- odic and quasiperiodic orbits.
ditions under which the ray is launched. Note that the param- The fact that all orbits can be characterized by a particular
eterL,, as given in the plot, has dimensions of lenfth caustic which they touch, and that moreover all periodic or-
Eqg. (795]. This reduced two-dimensional problem can bebits come in infinite families, is a general propertyiofe-
analyzed completely without reference to the original three-grable Hamiltonian systems, to which the special centrifugal
dimensional ray tracing, with, as a parameter that encap- billiard defined here belongs. That the paraboloid billiard is
sulates the third degree of freedapnwhich has been elimi- integrable, can already be concluded from the existence of a
nated. We have, broadly speaking, converted to a corotatingeparation ansatz for the wave equation, which we discussed
frame of referencéwith rotation speed always matching the in Sec. lll. However, we have not yet completed our program
varying angular velocity of the ray and thus obtained a of connecting the ray and wave approaches, and in particular
planar problem in which we now look for the classical orbits.have not addressed the question of how to determine quan-
The simplification is considerable because the threetitatively the type of ray trajectories that correspond to a
dimensional ray motion in the cavity is rather difficult to given mode. So far, the correspondence was established by
visualize, compared to the motion in te plane. visual inspection alone. The quantitative connection is ob-
The two periodic orbits in Fig. 1@) exemplify this situ- tained by comparing the ray patterns of Fig. 10 with the
ation: after the trajectory completes one round trip inzhe  effective potentialV of Eq. (45). We shall see that, for an
plane, it returns to its initial position with the initial integrable system, we can in fact uniquely connect a particu-
orientation—but in the original three-dimensional cavity lar caustic with a given mode.
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As a final remark concerning the periodic orbits in this This approximation means that we can neglect the effect of
integrable system, it is worth comparing the patterns of Figpolarization on the ray-wave correspondence in the semiclas-
10(a) and especially Fig. 4 with the “bowtie laser” of Ref. sical limit—however, we shall make use of this only later, in
[19]. There, a semiconductor cavity was designed in such ¢he ray analysis of Sec. VII. Since we have been interested in
way as to obtain lasing from a bowtie-shaped mode withstates at rather smatland in particulamn=1, in Fig. 10 we
highly desirable properties, foremost among them its focusplot only trajectories with_,#0.
ing action in the center of the cavity. The focusing patterns A second semiclassical relation follows from Ed47)
of Fig. 4 are very similar, but the main difference is that inand(51) if we ask for the valuez, of z corresponding to the
our case these orbits occur in families whose members camoint u,, v, at which the caustics have their singularities.
cross thez=0 plane with all possible axial displacemepts The whole caustic is uniquely determined by its singular
In the semiconductor cavity, most rays move on chaotic trapoint at radial distancp, and heightz,, cf. Fig. 10. Accord-
jectories, and only a small range of initial conditions for theing to Eq.(3), we obtain
rays lead to a stable bowtie pattern, leading to modes which
are strongly concentrated near a unique bowtie path, and Z
hence even less spread out in space than the examples shown Zo_ﬂ'
in Fig. 7. This leads us to anticipate that the beneficial prop-
erties of then=1 modes found for our integrable system can This identifies the meaning of the separation consZaaiso
in fact be enhanced if we allow for the possibility of chaos inquantifying the earlier observation that f&=0 both the

(89

the ray dynamics. wave and ray patterns are symmetric with respect to the focal
plane: in this case, the cusp occurs on this mirror plane, as in
. ) . o _ Fig. 1Qb).
D. Connection with the effective potential in parabolic With Egs. (78) and (89), we have completed the bridge

coordinates from the exact wave equation via semiclassical WKB quan-

The classical turning points for the two degrees of free-ization to the ray caustics. By specifying the quantingd,
domu andv in the potential of Eq(45) determine the pa- andk of a given mode, we uniquely determine a caustic, and
rabolas which describe the caustics in Fig. 10. We note thawith it a particular family of ray paths. Now we can use
the causticgand also the quasiperiodic rays that generate tha@dditional properties of the ray picture to better understand
caustics we showhave a well-defined distance of closest the cavity modes. This is especially promising in this system
approactp, with respect to the axis, given by the corner at because we have seen that the semiclassical approximation is
which the two bounding parabolas meet. Describing this irextremely accurate here. The reason for this somewhat sur-
parabolic coordinates, we find thag is approached if botl  prising accuracy lies itself in the properties of the ray dynam-
and # simultaneously reach their inner turning points. Ex-ics, butin order to make this clearer we need to introduce the
pressing this condition in terms of Eqel7) and (51), we  concept of a phase space in which the ray dynamics can be
obtain the simplesemiclassicatelation described.

87) E. Families of rays and Poincaresections

x| >

Po=
A phase-space description is often used in classical me-
chanics because it carries more information about the pos-
Here we have used the coordinate transformatien/¢é sible trajectories than mere real-space diagrams. This ap-
[cf. Eq.(3)], and the definition of the rescaled variabl&s|.  proach was recently applied to the analysis of ray dynamics
(42)]. in optical cavities as well20,21], with the goal of providing
The distance of closest approach for individpariodic  insights that are not revealed by ray tracing in real space. In
orbits is not given by this expression, but the minimadver  particular for the treatment of non-integrable resonator ge-
the wholefamily of such orbits does follow this law. The ometries, it has proved valuable to represent the phase space
caustics in Figs. 1®)—10(d) exhibit cusp singularities at, of the rays in terms of Poincamsurfaces of sectiofSOS.
because, in that extreme point, thenotion has zero veloc- For our purposes, the following SOS will be chosen:
ity: it is clear from Eq.(75) that the smallesp will be It is easy to convince ourselves by recalling Fig. 3 that
achieved wherp=z=0. But from the same equation we any ray trajectory in the cavity has to encounter the focal
immediately obtain that the angular momentum then equalBlane infinitely many times as it propagates. However, the
the axial distance, and with E(B7) this reproduces Eq78).  radial distance of these crossings, as well as the valye of
We have therefore established that the ray’s “angular momay vary from one crossing of this plane to the next. Now
mentum” is directly proportional to the modified angular we can consider
momentum quantum numberof the mode under consider- .
ation. In the semiclassical limit of largk, the difference p andp,=p (90)
betweermn=m=1, andm becomes negligible in this expres-
sion, so that we recover the intuitively expected proportion
ality

as a pair of canonically conjugate position and momentum
variables, and attempt to image the subset of phase space
spanned by them. In order to do this, we launch a ray trajec-
tory and follow it for many crossings af=0, each time

L= po~ m 889) recording the instantaneous valuespofp, as a point in a
z=Po ' two-dimensional graph. The result is shown in Fig. 11. A
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shows that almost all trajectoriéwith the exception of the
08 [ periodic pathsgenerate curves with the same topology: they
0.6 | begin and end ap=2f, with one turning point inbetween.

? o4l There are other integrable systems for which the Poincare

5 02 b section has a more complicated structure, one closely related

g ok example being the ellipsoidal cavity22] or its two-

= 65 dimensional counterpart, the ellipse billid@B]. In this case,

:«_:.- =T the phase space consists of two components in which the
=04 - topology of the trajectories is different: One type of motion
=06 [ consists of rays circulating around the perimeter as so-called
-0.8 | =\ whispering-gallery orbits; the other is a bouncing-ball oscil-

- e A — lation across the short diame{&4]. There is a division be-
9 ,;min 0.2 °'4p /(2f) 0.6 0.8 1 tween these two types of trajectories, similar to that between

oscillation and rotation in a pendulum—called the separatrix.
FIG. 11. Poincaresurface of section of the ray dynamics for The WKB approximation or its higher-dimensional generali-
L,=0.1f as in Figs. 108)—10(c). The minimum distance, from zation, named after Einstein, Brillouin, and Keller, cannot be
the z axis, given by Eq(87), is indicated by the dashed line. All applied without severe corrections in the vicinity of such a
quasiperiodic trajectories fill smooth curves extending betweergeparatrix in phase spaf25,22,23. In our case, this break-
some minimumpmis=po and p=2f. The two gray dots are the down never occurs, and semiclassical results are thus of high
crossings of the focal plane generated by a periodic orbit, as Showﬁccuracy. Being a conic section, the parabola can of course
in Fig. 10@). The plot uses 2 as the length unit. be considered as a limiting case of the ellipse, with one of its

typical trajectory is—as mentioned above—quasiperiodicfoc! moved to infinity. This leaves no possibility for
and in the SOS generates a dense set of points that all lie g{uncing-ball trajectories, which leads to the absence of a
a smooth curve. Several trajectories have been followed igeparatrix.
this way, and are represented in Fig. 11 by the different Finally, it is worth asking why the sharp corners at the
individual curves. Each curve exhibits some minimal axialintersection between the paraboloid and the focal plane do
distancep > po; this is a true inequality because quasiperi-not cause any corrections to our semiclassical treatment,
odic orbits do not reach their point of closest approach to theven though the surface curvature at these points is clearly
z axis precisely on the focal plane. Since the SOS record thewuch shorter than the wavelength. It is known that in such
instantaneoug upon crossing the focal plane, the resulting casesdiffraction can occur, which makes it impossible to
curves have their turning points at larger explain the mode structure purely based on classical orbits
The only orbits which have their real turning points ex-[26,27]. However, this phenomenon is absent for certain spe-
actly at the focal plane are the periodic orbits. A periodiccial angles subtended by the corners. One of these “benign”
orbit, as displayed in Fig. 18), generates exactly two dis- angles is precisely the 90° angle we encounter at the corners
crete points in the SOS, corresponding to the two distinchf the double paraboloidcf. Fig. 3. When the confocal
values of the radial distance at which the axisz=0 is  congition is violated, so that deviations from a right angle
crossed. Both points in the SOS liegf=0 for the periodic  occyr at the corners, we have to expect diffractive correc-
orbit, as can be verified from the trajectory in th@ plane — ions o the semiclassical analysis, resulting from classical
which always crosses treaxis perpendicularly. The quasi- auq that hit the corners and are reflected in an arbitrary
periodic trajectory of Fig. 1) corresponds to the leftmost direction because the law of specular reflection is undefined

curve in Fig. 11, which has its tuming point almosiggtin in that instance. Fortunately, we shall see in Sec. VIl that

the SOS. The caustic is almost on the focal plane, but stil . .
offset from it by an amount that is not discernible in Fig. uch orbits are far remo"ed from the regions of phqse space
10(b). where we expect the important focusing modes to lie.

The distinction between the periodic orbit and its closely de\llglghlz Saeggzgiigvgt:ﬁ\ﬁrg'Sacﬁg’sﬁgwhg\"; ﬁgﬁg?ﬁgg%‘?}rgs_
neighboring quasiperiodic relative in the SOS of Fig. 11 isresentepd with the helo of the,Poinéamction We have also P
appreciable—a pair of points generated by the former, versus P :

a one-dimensional curve for the latter. But exactly on the ”neobserved that the high-intensity regions in the wave solutions

p,—0, there exists an infinite number of other pairs ofcorrespond to the ray caustics, because there the density of

. . L . . rays is high—in fact divergent if we recall the discussion of
points, belonging to the periodic orbits of the same family. the classical turning points in the effective potential below
The SOS in these coordinates allow us to see directly i 9p P

which places the focal plane comes into contact with the ra %q' (47). Therefore, even in situations where we cannot ob-
P b YRain the wave solutions easily, their possible intensity distri-

under'consideration.' Thi; is a centra'l piece pf informationbution can be inferred by investigating the ray dynamics
when it comes to estimating the focusing at this plane Wher?

i ; .~ Tirst. This will now be carried out for a cavity that deviates
the quantum well is assumed to be. The forbidden regions - ihe ideal model shape
around thez axis induced by the angular momentum barrier pe-

show up as inaccessible portions of the SOS toward sgnall
VIl. NONCONFOCAL DOUBLE PARABOLOID

F. Accuracy of the semiclassical approximation Having obtained an overview of the types of ray motion

We can also comment on the striking accuracy of thethat can be encounterd in the parabolic dome, and estab-
semiclassical approach in this system. The Poinsamion lished the connection to the mode structure of the full vec-
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torial wave equations via the short-wavelength approxima- 1
tion, we now want to introduce a model cavity for which the 08 |
wave solutions cannot be obtained by separation of variables. 0.6 | o
The variety of possible deviations from the ideal model ge- g 4., | &%ES
ometry of Fig. 3 is enormous, so we have to restrict attention 2 BN
; .o . S 0.2
to certain special distortions that can be expected to be ge- 3
neric in some sense. 5 or
£ -02| ¥
Ta 0.4 | 3
A. Model deformation * o6 | 3
The distortions we choose are obtained by pulling the two -0.8 | 2L
intersecting paraboloids in Fig. 3 apart or pushing them to- -1 . SRS il - 5
gether along the axis by an amount 2. Specifically, in 0 0.2 0-4p/(2f)0-5 0.8 1
spherical coordinates as a function of polar anglethe
shape is given by FIG. 12. Surface of section at,=0.1f of a nonconfocal
double-paraboloid, with foci pulled apart ky=0.02f. This desta-
(9) 2f 2€ bilizes the cavity, leading to chaotic ray dynamics which generates
r =

+ . (91 i i i i i
1+cos6  1+.1te (1_00520) an wregular cIout_j of points fl_lllng a_llm(_)st the whole region thgt is
accessible for thid,. A special point is encountered on the line

p,=0, where the irregularity gives way to a confluence of hyper-

The respective foci, which coincide in the integrable model bolic traces whose vertices are centered on a single, unstable peri-
then move off thep ,axis This nonconfocal arrangement of ‘odic orbit. The spatial pattern of this new periodic orbit is shown in

the parabolic walls can be viewed as a model for fabrication!:'g' 133).
induced deviations from the ideal cavity shape—where the Analogous nonperturbativeeffects arise in the present
_dome COUld. be sl?ghtly too flat or too _pointed. It can also b(.amodel, because the distortion can lead to new types of tra-
interpreted in a different way, taking into account the poss_';;zctories that are not present in the confocal cavity, in a

bilitty thattlthel bour;)daéy (;on.(?ition at the tt)a?.e of &hti d(f).mlg 'Srocess known as bifurcatid29,3d. The first consequence
not exactly given by Eq(7), if some penetration of the fie of the deformatiore is that the infinite families of periodic

Fhrough the d|ellec'tr|c mirror on the Quantum we!l IS take.norbits break up, leaving only a distrete number of periodic
into account. This is of course a realistic expectation, and it

; rbits of the same topology, which can be divided in an
gﬁect on the wave solutions W.OUId be that _the TE eIeCtrICequal number of stable and unstable paths. Stable paths have
field no longer needs to be strictly symmetric under reflec

tion at the focal plane. If one maintains that the dome hathe property that rays with slightly different initial conditions

. ) o . -Temain close to the given periodic path for all times, while
indeed been fabricated with its base in the focal plane, thIfmstable periodic orbits are surrounded in their immediate

soft boundary condltloln on the mirror can be modeled by neighborhood by chaos—trajectories deviate from such a pe-
assuming that our solutions should correspond to waves ren

flected at I qf the dielectric interf b odic orbit at an exponential rate if the initial condition is
ngni a%oinptane removed from the dielectric interface yonIy infinitesimally varied. For more quantitative statements

L nd further background on the transition to chaos, the reader
Therefore, the nonconfocal double paraboloid is a way o g

taking into account the cumulative effects of fabrication un- s referred to the literaturg29,31,18,
certainty and soft boundary conditions at the dielectric mir-
ror with a single model parameter denoting half the dis-
tance between the foci of the top and bottom parabolic wall The Poincaresection is very suitable as a diagnostic tool
in the unfolded cavity. One could think that a perturbationto identify this process of emerging chaos on on hand, and
theory ine could allow us to use the solutions obtained so farthe stabilization of certain periodic orbits on the other hand.
and smoothly extend them to the non-confocal situation. Thighis is illustrated in Fig. 12. The perturbation consists of
is the traditional approach in physics and it is the reason whyulling the foci of the walls apart by=0.02f along thez
only simple, integrable systems are treated in textbooks oaxis. Since this preserves the axial symmetry of the cauvity,
guantum mechanics or classical mechanics alike. Howevet,, is still a conserved quantity—the arguments of Sec. VI C
perturbation approaches become tedious and even impossilikely on no other symmetries of the problem. We chbse

for wave equations whose short-wavelength lifiie., ray = =0.1f in the plot. The small distortion of 1% is already
picture exhibitschaotic dynamicsThe difficulties that arise  sufficient to change the phase space portrait significantly,
can already be seen without introducing chaos, if we try tacompared to Fig. 11. The unstable periodic ofhjppearing
obtain the wave functions of an ellpsoid-shaped resonator ggominently in Fig. 12 as a so-called hyperbolic ppiig

a perturbative expansion starting from the eigenfunctions ofhown in its spatial pattern in Fig. (. It is a self-retracing

a spherical cavity. This poses no problems as long as one fgeriodic orbit because it reflects from the boundary at normal
interested only in modes of the ellipsoid whose topology isincidence(in the z-p plane.

analogous to that found in the cirdl28]. However, as men- The effects that chaos can have on the ray motion are
tioned earlier, the ellipsoid exhibits separatrix structure inillustrated in Fig. 18). Shown here is a single ray trajectory
phase because there exists a type of motion that the sphendich superficially has some similarity to Fig. (b). How-
does not possess: the bouncing-ball trajectories. ever, the path does not trace out a well-defined caustic in Fig.

B. Unstable and stable ray motion in the deformed cavity
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Pp (dimensionless)
o

-0.4

FIG. 13. Trajectories in the nonconfocal cavitg) shows the
unstable periodic orbit arising a&=0.02f, andL,=0.1f; cf. Fig.
12. For the same parameter, a chaotic trajectory is sed(i)in
Oscillatory motion around stable periodic orbits occurgdnand
(d), wheree=—0.0X andL,=0.1f, as in the SOS of Fig. 14. The . _ L
patterns of typ&a) and(c) derive from the periodic motion of Fig. I_:IG. 14. Surface OT section MZ_O'lf.W'Fh E_.fo'ozf' The
10(a) as a result of the shape perturbation. In real three-dimensionzfla\my develops a multitude of stable periodic orbits surrounded by
Cartesian space(g) shows the straight-line ray motiofarrows elliptical islands. The most prominent island of stability is centered
giving rise to the curved “envelope” surface, whose cross sectior" the the “nep!’:O W.here a S.ma” circle |qd|cates the .Iocatllon of
we see ina) the corresponding periodic orbit around which other trajectories can

' oscillate. Shown in the inset is the central stable periodic orbit. The

13(b). What looks like a caustic here is in fact better de-next inpermost closed line in the SOS belongs to the trajectory
scribed as two caustics of the type in Fig. 10, arranged aShown in Fig. 1%).
most symmetrically with respect to the focal plane. Note, in
particular, the symmetric occurrence of cusps both belovphase space structure in the SOS differs markedly from Fig.
and above the line=0. Recall that in the integrable case the 12: many trajectories trace out one-dimensional curves in the
positionspg, andz, of the caustic singularity are uniquely SOS which organize as closed loops, forming island chains
given by the turning point§, and 7, (or equivalentlyuy and  that proliferate with various sizes. All these islands are cen-
vp), in the effective potential. Reversing the sign of the cusptered around stable periodic orbits—the largest island of sta-
coordinatez, corresponds texchanginghe role of¢ and #. bility lies symmetrically around the ling=0, and corre-
The significance of Fig. 1B) is therefore that the degrees of sponds to oscillatory motion of the type shown in Fig(d3
freedomé and 5 are no longer decoupled, because during arhe center of the island is in fact formed by a periodic orbit
single ray trajectory both the cusps a§ and —z, are similar to Fig. 13a), the only difference being that small
reached. By virtue of Eq(89), the quantityZ is thus not perturbations of its initial conditions do not lead to chaos as
conserved any lomger. A trajectory is able to exhibit mul-in Fig. 12, but to the motion of Fig. 18).
tiple points of closest approach to tlzeaxis, and is not Another oscillatory ray path centered at a stable periodic
strictly guided by caustics. orbit is shown in Fig. 1&). The pattern should be compared
Under these circumstances, it is not clear what to expedb Fig. 10c), which has the samk,. The similarity is ap-
for the mode structure of the cavity, because we lose thearent, except for the fact that the path in Fig(cQwill
possibility of labeling the eigenstates by a complete set oeventually fill the remaining gaps in that plot, if one follows
guantum numbers. This does not imply that there are ndt for a longer time. The path in Fig. 18), on the other hand,
modes associated with chaotic rays, but one requires addis truly restricted to the vicinity of a self-retracing orbit
tional techniques to perform a semiclassical quantizatiorwhich reverses its propagation direction at one end due to
[31,32. The destruction of the conserved quanfftyneans perpendicular reflection at the wall, and at the other end by
that there is one less constraint which the ray trajectoriesunning up the centrifugal barrier perpendicular to teis.
have to satisfy; this allows them to fill two-dimensional areas All islands of stability in Fig. 14 generate their own caus-
instead of one-dimensional curves in the SOS. Since the SO®s, which are topologically different from the ones in the
gives us a picture of how rays intersect the plared, cha-  integrable system. The caustic created by the orbit in Fig.
otic rays can be seen to show a less concentrated overld@(c) is simply the boundary of the regions into which the
with that plane. We anticipate that the presence of true causay never penetrates. The difference between the absence and
tics is required to create the best focusing action. With thigpresence of caustics in Figs. (b and 13c) is not easily
hypothesis, the goal must be to identify ray orbits that exhibitappreciated if we consider only the real-space plots. Here the
caustics. This occurs in the vicinity of stable periodic orbits,usefulness of the Poincamection as a diagnostic tool is
due to the fact that perturbed trajectories execute an oscillagain to be noted—showing two-dimensional clouds of
tory and in general quasiperiodic motion around such stablpoints versus one-dimensional curves, respectively, for tra-
orbits. In Fig. 12, however, no stable periodic orbits can bgectories without and with caustics.
identified, telling us that, for the deformation chosen there, It follows from the preceding discussion that a negatve
no stable modes with,=0.1f should exist. leaves us with a cavity that is in many respects similar to the
The situation changes if we consider Fig. 14, in which  unperturbed double parabolofdf. the ray pattern of Fig.
is the same but the sign of the nonconfocal displaceraémt 13(d)]. However, the qualitative and important difference is
reversed. The walls of the double paraboloid are hencthat some periodic orbits are nowore stabilizedhan ate
pushed together instead of being pulled apart. The resulting 0. In particular, there are simple ray bundles such as Fig.
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larger| €|, motion of type shown in Fig. 18) and the inset of
0.8 Fig. 15 is in fact stabilized further—for both directions of
0.6 displacementsilike.
B o4 The modes corresponding to this particular ray pattern are
2 0.2 closely related to the fundamentalwaves we discussed in
S Sec. Il E, because both arise from ray bundles in the imme-
E 0 diate vicinity of theshortestperiodic orbits in the cavity. For
5 ~02 e=0 this was the family of paths in Fig. (&), members of
o 0.4 which can be smoothly deformed into Fig. (&8 without
-0.6 changing the topology— i.e., the number and sequence of
—0.8 reflections and turning points. we shall therefore call all
-1 these orbits théundamental orbit®f the cavity. The mode

°‘4p/(2f)°’6 0.8 1 spacing of the corresponding eigenstates should also be com-
parable for the perturbed and unperturbed cases. However,
FIG. 15. For the same deformatien-0.0% as in Fig. 12, this We have to defer a detailed analysis of the wave solutions
surface of section at the smaller angular momentus 0.03f and their semiclassical correspondence to a future paper.
shows that a stable orbit exists in addition to the unstable hyperHere, the goal has been to introduce the ray dynamics and its
bolic one. This is indicated by the elliptidens-shapedisland  phase space as the backbone on which the mode structure is
structure. The hyperbolic point is located to the right of the island.built.
The ray pattern near the stable periodic orbit is shown in the inset. Assuming that the deformation is=0.02f, we have the
The small corresponding mode volume is apparent. peculiar situation that the fundamental orbit is unstable if
L,>0.03&, (cf. Fig. 12. Therefore, the most desirable
13(c) that promise reasonable focusing close to the center ghodes will be those with smallér,. According to Eq(78),
the unfolded cavity. The physical explanation for the generave have to choose modes with lawand highk to achieve
stabilizing effect that we achieved by moving the parabo-his. For the experimental cavity we hake~ 14s. Taking
loids closer together lies in the well-known fact that a two-n=1 as in Sec. Ill E, we arrive at the semiclassical value
mirror resonator configuration has a focusing action when

the mirrors are separated by less than the sum of their radii of L,=——~0.02%F (92)
curvature. Conversely, mirrors that are further apart than this 147 '

criterium act in a defocusing way. This is consistent with the

observation of a large chaotic domain in Fig. 12. which is close to the situation depicted in Fig. 15. The dif-

These simple arguments, and the chaotic picture of Figference in the SOS is insignificant. We have no accurate way
12, seem to suggest that stable ray motion is not to be exf determining the actual value efmost closely describing
pected in the supposedly defocusing configuration with the real structure, but these considerations give us consider-
=0.02. However, when applying the standard criteria forable confidence that modes with a spatial pattern as in Figs.
focusing and defocusing resonator geometries, we have tb3(c) or 15 will be found in the cavity, because the relevant
bear in mind that we are dealing with a centrifugal billiard L, estimated above is in a range where this fundamental orbit
whose ray trajectories are curved. The effect of the centrifuis stable—irrespectiveof the sign ofe and moreover largely
gal barrier is to push the regions of allowed ray motion out-independent of its magnitude.
ward, until only a small patch surrounding the equatorial
corners of the cavity is accessible. At larlggthe motion is
then so confined that chaos does not develop. This is just the
whispering-gallery phenomendi7]. On the other hand, at
L,=0.1f we certainly found chaos with no remaining islands  The internal ray dynamics of the dome resonator has up to
of stability. SmallL,’s are what we must be interested in if this point been evaluated under the assumption that the cav-
concentration near the focal points is to be achieved. ity is a perfect resonator. There are two physical mechanism

In view of this, it is all the more surprising that the same that invalidate this viewpoint: absorption in the gold mirror,
cavity does in fact support stable orbits at ewsenalleran-  and transmission through the Bragg grating. The trade-off
gular momenta than in Fig. 12. This is shown in Fig. 15 forbetween the comparatively large absorption of a metal, on
L,=0.03f. The periodic orbit responsible for the single the one hand, and its ability to reflect omnidirectionally, on
stable island in that SOS is again almost identical to the onéhe other hand, were discussed in H&f3]. In our context,
shown in Fig. 18a), and its oscillatory neighborhood is metallic absorption will always degrade tQefactor because
analogous to Fig. 18); the inset of Fig. 15 shows this simi- the gold layer provides only an estimated 95% reflectivity
larity. This stable orbit exists only at sufficiently smal}; [33]. However, the reflectivity of the Bragg mirror can be
its associated island in the SOS shrinks to a point whgn  significantlylower for certain modes and in that case consti-
~0.03d. The conclusion is thdioththe nominally focusing tutes the dominant mechanism f@r spoiling. The variable
and defocusing configuratiors= = 0.0 permit the forma- that determines the reflectivity of the Bragg mirf@t the
tion of ray bundles with a spatial distribution as in Fig. fixed operating frequengyis the angle of incidencey with
13 (c), and hence the stable modes associated with this patespect to the axis. For purposes of a qualitative analysis,
tern should be robust. This is also confirmed by analogousve assume that the Bragg reflectivity is unity fpr22°
Poincaresections for larger displacements of the foci. At=y,., but drops to~20% outside this cone of incidence

VIIl. BRAGG MIRROR AS AN ESCAPE WINDOW
IN PHASE SPACE
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1 —T T T T T the high-reflectivity range of the DBR grating. Note that the
0.8 | — critical lines for ray escape are independent of deformation
0.6 | low-reflectivity region . because they rely only on E¢83).
'g 0.4 { — As a result of this comparison, we find first of all that low
S 0.2 | i angular momenta are required by the escape criterion, be-
g o H { high-reflectivity region - cause the phase-space area enclosed by the critical curves in
E o2k 4 Fig. 16 shrinks with increasing,. This is understandable
{ 0.4 | e because the ray motion in this case has a strong azimuthal
o component contributing to the tilt angle with respect to zhe
—0.6 [ - . . S .
L axis. Let us turn our attention to the stable periodic orbits
—o8 u arising in the chaotic Poincasections. The case,=0.1f,
-1 0 012 oj4 ' ois ofs ' 1 shown previously for illustrative purposes, now turns out to
p/(2) be roughly the maximum angular momentum at which the

stable orbit of Fig. 14 is still confined by Bragg reflection.
The lower angula momentuin,=0.03f coming close to the
surface normal, or for regions of high reflectivity in the Poiricarees“m‘fjlted value for the waves of our experimental cavity,

section that are bounded by E§6). The resulting curves bounded on th? other haf‘o_" places the stable periodic orbit well inside
by |p,<0.374 are shown fot,=0.03 (solid line) and L,=0.1 the h|gh-reflect|V|ty range o_f 'ghe DBR. .For.the case of a
(dashed ling A second high-reflectivity window exists for rays defocusing deformation this is illustrated in Fig. 15. The per-
falling between the boundary of this plot and the solid line near thddic point is atp~0.086. For a focusing deformation of the
boundary. This becomes relevant only for the integrable confocasame magnitudee= —0.02, the periodic point lies ap
cavity, because the perturbed shapes have no stable orbits in this0.99. Both values are to the right of the solid line in Fig.
second window. 16, corresponding to high reflectivity.
For the chaotic orbits, we observe that they spread out

[33]. In other wordsy. is the boundary between absorption- over the Poincareection in such a way as to yield significant
dominated and leakage-dominat®dactors. A second win- overlap with the low-reflectivity regions of Fig. 16. This is
dow of high reflectivity opens for rays at very oblique inci- true for all Poincaresections shown in this paper. Therefore,
dence on the grating surface, more specifically yor60°.  we conclude thatavity modes associated with the chaotic
This second window will be discussed further below. phase space regions are short liveahd the corresponding

The ray picture allows us to use this rough transmissiorbroad resonances will not affect the spontaneous emission
criterion as a guide in order to separate long-lived cavityenhancement of the parabolic dome. A quantitative estimate
modes from short-lived ones. The angldetweerz axis and  of the resonance lifetimes could be obtained by measuring

FIG. 16. Assuming that the Bragg mirror stack at the plane
=0 yields high reflectivity only for waves withig.=22° from the

a trajectory is, according to E¢72), given by the time that a chaotic trajectory spends, on average, in the
high-reflectivity region, without excursions beyond the criti-
CoSy=r-,=2, (93 cal line. However, we shall not attempt quantitative predic-
tions at this stage of our investigation, and defer it to future
so that work.
) A gquantitative analysis would also be necessary to deter-
1—2%=sirf y. (94 mine the modal lifetimes in the marginal case of the ideal

) . ) _ confocalcavity. The reason is that the ray picture alone does
One can substitute this as the right-hand side of(&8), and  not allow a clear distinction between classically confined and
obtain an equation for a curve in the plapgo (p=p,) unconfined orbits, because the classification according to

spanning the Poincarsection: stable and unstable trajectories does not apply in the inte-
grable parabolic dome. All the solid curves in the Poincare

L2 section of Fig. 11 cross into the low-reflectivity region of

Ip,l=\/sifx——. (95  Fig. 16 at some point, but the time spent in the high-

p reflectivity range can be very long classically. To illustrate

this, in Fig. 17 we show a patrticular ray trajectory foy
=0.1f in the confocal paraboliod, which for almost 500
crossings of the focal plane remains inside the regions of
high reflectivity. This time, the second window of high re-
> flectivity close to the border of the SOS is important because
i _ﬁ the ray alternates between the low- and higlwindows
Ip,I> \/ sirfxc 5 (96) ¢ X
rom one crossing of the focal plane to the next. The regular
nature of this motion makes long lifetimes possible because
In order to obtain a feeling for the type of ray orbits that it strictly prevents the ray from entering the low-reflectivity
can remain in the cavity under this escape condition, in Figregion for long times, whereas a chaotic orbit would quickly
16 we plot the resulting curves in the surface of section forexplore this domain in a quasirandom way.
the two different values of , appearing in Figs. 11, 12, 14, The trajectory shown in Fig. 17 is practically identical to
and 15. The plot should be superimposed on these plots thhe one shown in Fig. 18). The alternating way of inter-
decide which parts of the respective phase space falls withigecting the focal plane can be understood from that figure, or

Using the critical value ofy. in this equation specifies the
escape condition in the Poincasection: the Bragg mirror
becomes ineffective when
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1 — T T T of investigating the chaotic structure and dynamics of some
08 | - . of the modes of cavity.
06 | : Low-reflectivity region - Regarding the structure of the modes in the parabolic cav-
@ o4l g ity, we note that the scalar wave equation is solvable analyti-
% 0.2 _L Escape location i cally by separgﬁon of variables. However, the vectorial
@ ol / boundary conditions for the electromagnetic field destroy
E 02 | _ ) i this property, leaving only the cylindrical symmetry. Never-
T Trajectory theless, the fundamental seriessafiaves(free of azimuthal
o 04 / i nodes$ in a confocal electromagnetic cavity can be solved
=06 ¢ 7 rigorously. It has its energy concentrated in a small volume
—-08 | ~° 3 (of ordern®) around the focal point, even though at the focal
-1 g - 0'2 : 0'4 . 0'6 . 0'8 — point itself the electric field is zero due to the vectorial nature
) “p/2f) ’ of the field. The higher order modes cannot be solved as

) readily in the full three-dimensional model, but it is possible
FIG. 17. The Poincarsection combined with the escape condi- to appreciate their features by reducing the problem to scalar
tions can be used to extract information about the lifetime and esform. In these higher order modes, the energy is concentrated
cape locations. This is illustrated here for a single ray aifiick  in |obes that surround the focal point, but avoid it because of
trace), followed for 500 crossings of the focal plane. The gray areaghe centrifugal barrier that arises from the cylindrical sym-
is the region which has to be avoided by the ray in order to remair}netry. Indeed, these modes correspond to non-zero values of

in the cavity. the angular momentumn{#0) and for large values ofn
tend toward a type of whispering-gallery modes with inten-

from Fig. 10a), which shows periodic orbits closely neigh- sjty concentrated in a ring along the focal plafef, Fig.
boring the quasiperiodic trajectory of pl@t). Note that the 10(d)].
ray model allows us, in addition, to predict the spatial loca- The stability of the modes of the parabolic cavity with
tion where the mode corresponding to this ray bundle willrespect to geometrical deformations can be assessed by ex-
preferentially be coupled out through the Bragg mirror. Asamining the ray trajectories that correspond to each mode.
can be seen in Fig. 17, the low-reflectivity region is reached:or a deformation that corresponds to a small deviation from
for the first time when, after many reflections, the trajectoryconfocality, chaotic ray patterns emerge. However, we also
departs from the immediate neighborhood of the focal refing stable ray orbits concentrated in a small part of the cav-
gion, i.e., intersects the focal plane withpathat is slightly ity volume. Independent of deformation, the most important
too large. stable orbits are those which in cylinder coordingiesndz

The subtle balance of parameters that prevents chaos frofgjiow the shortest possible periodic trajectory. This general
appearing will, in all experimental realizations, be shifted totopology is the same for a range of deformatigimeluding
either the defocusing or the focusing side. Therefore, thene jdeal confocal cavity and corresponds to a ray returning
above ray analysis of the mixed phase spaces for these twg the sameyp andz after two reflections, missing the focal
situations above is our main concern. However, as in Prévineint by a small amount because the field there has to vanish.
ous sections the integrable case is a useful starting point tphe generic shape of this orbit is represented in Fig. 13, and
illustrate our strategy. The advantage of the ray approach igs special modification in the confocal case with its marginal
that_it provides fast gnd intuitive prediptions, but. furtherstab”ity is shown in Fig. 10. The topological equivalence
studies are required in order to determine how this modehetween the stable orbits of the distorted cavity, on the one
succeeds in characterizing the cavity quantitatively. Paranand, and of the confocal system, on the other hand, indi-

doxically, we can already conclude that the existence otates that the structure of the fundamerstavave is stable
chaos and islands of stability makes it easier to obtain resuligith respect to deformations.

from a ray analysis, because there is a sharper separation From an experimental viewpoint, the results of this theo-
between long lifetimes for the stable modes discussed abovgtical analysis indicate that the cavities already fabricated in
and' short lifetimes for modes associated with the chaotig)y laboratory should possess stable modes in which the en-
portions of the SOS. ergy is confined in a volume of ord&F in the vicinity of the
focal point, in spite of fabrication errors. The higher order
IX. CONCLUSION modes, _in which Fhe fjeld is concentrated_away from 'Fhe
focal point, in whispering-gallery-type configurations, will
In this paper we have examined the modal structure of thée unstable because of the presence of fabrication defects. At
electromagnetic field in a semiconfocal planoparabolic cavthe same time these modes will decay quickly fast as they
ity (or, equivalently, in a double-paraboloid confocal cavity correspond to oblique incidences onto the Bragg mirror, at
in view of our recent fabrication of semiconductor micro- angles for which the mirror is no longer reflecting. Experi-
cavities having that geometry. In order to account for thements are in progress to characterize the structure and dy-
effects of the inevitable fabrication defects, we also considnamics of both the stable and unstable mddésThe robust
ered the stability of the modes with respect to deformationstable modes in which the field is confined in the vicinity of
consisting of deviations with respect confocality. This theo-the focal point should give rise to a strong enhancement of
retical analysis was thus motivated by our ongoing experithe spontaneous emission of a dipdech as a semiconduc-
ments on these structures, and feeds back into this expetier quantum well or a semiconductor quantum bplaced
mental work by opening an interesting perspective in termshere, and a concomitant lowering of the lasing threshold,
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even for our cavities that are of mesoscopic dimensions. This y
is because because even in such large cavities, whose geo- ¢>=arctan)z,
metric volume is of the order of a few thousand cubic wave-

|engths, the central lobe of the fundame'ma/l/ave (Wthh wherer = ,/X2+y2+ 22 is the Spherica| radius vector. With
order of one cubic wavelength. Cartesian coordinates, which is helpful for physical consid-

] I_Thes_e considerations undebrscorﬁ.bt_he interest thalt Pargrations. The surfaces= const are paraboloids by revolution
olic rmcroresonators present y exnl iting qua“tF‘m € eCtrQébout the positivé axis having their focal point at the ori-
dynamic effects as well as optical chaos, in spite of their_. . - .
. . ; " . gin, while the surfaceg= const are directed along the nega-
relatively large dimensions. In addition, the mesoscopic cav® ' . o
ity dimensions of these structures are an important practicd]Ve Z axis. The plane=0 corresponds to the conditioh
feature, as they make the fabrication accessible to existing: 7- In terms of the cylindrical coordinatgs= yx“+y*, z,
experimental techniquesuch as focused ion beam etching and ¢, the parabolic coordinates obey

while, at the same time, they greatly facilitate the theoretical

analysis of these devices as they permit the use of short- p=NEn,
wavelength approximations. ) (A3)
z=35(§—7)
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APPENDIX: PARABOLIC COORDINATES z= (—E-E+n 7).
_ _ Vétn
The parabolic coordinated #, and ¢ are related to the
three-dimensional Cartesian coordinates according to In these parabolic cordinates, the electric field
=(E¢,E, Ey) is related to its representation in cylindrical
X= /&7 Ccosg, coordinates according to
y=\énsing, (A1) ’E_ [ i E e £,
TNEL R TR TNES
z= 3 (£- ), .
i E-{E - (B —E )t \-LE, (a5)
or, equivalently, = = §+7]\/§ +—E_ s
éE=r+z, 1
Ey=—(E,+E_).
n=r1-2, (A2) (2
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