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Properties of a chiral slab waveguide
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Abstract. The symmetrized constitutive relations of Condon are used to find possible solutions
in a waveguide formed from an isotropic chiral slab. Two eigenstates are found, related
to positive and negative helicity plane-wave modes in an unbounded chiral medium. These
eigenstates propagate along the slab, but are standing waves across the slab. Combinations of
these eigenstates satisfy the boundary conditions when the slab is bounded by parallel conducting
plates. The combinations are not transverse electric or transverse magnetic, but near cut-off
these combinations correspond closely to TE or TM modes in achiral parallel-plate waveguides.
Equations defining the dispersion relations are derived, and analytic solutions are obtained near
cut-off and at high frequencies. At high frequencies one of the helicity eigenstates dominates,
for all modes. Chirality of the slab medium splits the TE-TM degeneracy, but crossings of the
dispersion curves are possible (and are demonstrated for a particular case).

A dielectric-clad waveguide is also considered. Analytic results are obtained for the low-
frequency dispersion relations of the two fundamental modes. One of these modes approaches
zero dispersion when the refractive index of the cladding tends to one of the indices of the two
helicity eigenstates in the slab.

1. Introduction

The propagation of electromagnetic waves in waveguides filled with a chiral (optically
active) medium has been examined in the papers [1-14]. Of these publications, [1, 7, 11]
deal with a chiro-waveguide formed by parallel conducting plates. We re-examine this
problem and explore the properties of the propagating modes and of their dispersion
relations. We obtain analytic expressions for the wavevektanear the cut-offK = 0

(which occurs at different frequencies for different modes), and also at high frequency. We
find that near cut-off the modes have predominantly transverse magnetic (TM) or transverse
electric (TE) character. We verify Mahmoud'’s [7] assumption that the electric fields of
the modes are either even or odd when expressed in terms of a coordinate centred midway
between the conducting plates, and also his numerical deduction that one helicity always
dominates at high frequency. (Which one dominates depends on the sign of the chirality.)
We also find that crossings of the dispersion relations (wavevector versus frequency curves)
are possible for modes of different symmetry, and discuss when these can occur.

Although the assumption of ideal conducting plates is adequate at microwave
frequencies, the attenuation at optical frequencies would be considerable. Section 6 explores
the properties of a chiral slab clad with dielectric. Analytic results are obtained for the
dispersion relation at low frequency. We show that the fundamental modes bifurcate at
zero frequency. When the chiral index is small compared to the difference in the slab
and cladding refractive indices, the modes are TE and TM in character. Index matching
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enhances the effect of chirality, and one mode disappears when the chirality index is equal
to the difference in slab and cladding indices.
As our basis electromagnetic relations we use the two curl equations

¢V x E=—0B/ot ¢V x H=0D/dt (1)
and the symmetrized Condon [15] gyrotropic constitutive relations
D=¢E —gdH/odt B =uH + gdE/ot )

which have been selected by Silverman [16] as the most likely to be the correct choice among
the ones in use. The equations are linear, so we can deal with one Fourier component at a
time; we assume a time dependenc&’e and setwg = y, the chirality index. (The index

of refraction of the two modes of positive and negative helicity is y andn — y, where

n = ,/ep [16, 17].) The equations (1) and (2) simplify to

¢V x E=iwB ¢V x H=—-iwD 3)
The result of eliminatingB, H and D is [17]
1 2 I
,qu(—VXE):(eu—yz)w—zE—f—2 )/VXE-"-/LVX(ZE)]. (5)
s c cl s
The equation fotH is similar, withe and x changing roles:
1 2 [
er<—VXH>=(GM—)/2)CU—2H+2 yVXH+€VX(ZH)i|. (6)
€ c cL €

2. Propagation in a homogeneous chiral slab

The above equations hold for an arbitrary inhomogeneous medium. We now asspyme
andy are constant within the slab, that the wavefront propagates im thieection and that
the field components are independentyofThen all fields carry the factof&*—); apart
from this factor, the spatial dependence iszoonly. Let primes denote differentiation with
respect taz, and let

ki = (eu - )/z)a)z/c2 =k k_ @)

whereky = niw/c = (n £ y)w/c, with n = (en)¥?. Then the coupled equations (5) for
the components oF reduce to

" 2 w H 1
E!+kJE, — 2yzE_‘, —iKE. =0
w " 2 2 . W
zyzEx + E}+ (k; — K?) E, — 2|y;KEZ =0 (8)
—iKE, +2iy ZKE, + (K} = K?) E. = 0.

These differential equations have constant coefficients, and thus have sinusoidal solutions.
We seek standing wave solutions, and note that in each equifi@md E, always differ

by one derivative fromE,. Thus a standing wave solution has to be of the form (we omit
the ' time dependence)

E =[Xsin(qz + ¢). Y cosqz + ¢), Z coslqz + ¢)|€~ . ©)
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Substitution of (9) into the set (8) gives three equations linear and homogeneaudin
andZ. A non-zero solution exists only if the determinant of coefficients is zero:

k2 —q? 2y 24 iKq
C
2ygq k§ —g?>—K? —2iy9K =0. (20)
C C
—ikq  2yZK K2 —K?
C

This reduces to a quadratic equation f6f + ¢2, with solutions

(K?+q%), =ki= (\/a:i:y)zwz/cz. (12)

Thus, just as in an unbounded chiral medium, there are two effective wavenumbers
k+ = niw/c in the slab, with corresponding indices

ng=,eputy=nty. (12)
The associated electric field eigenvectors are given by (9), \&thY[ Z] proportional to
[quv k+s |K+] or [q,, —k,, IK*] . (13)

3. Dispersion relations for a chiral slab between conducting plates

We take the conducting plates to bezat 0 andz = d, and assume zer® and B inside
the plates (ideal conductors). The boundary conditions are that the parallel comp@nents
and E,) of E and the normal componeiB,) of B are zero at the plates.

The solutions (9), (13) do not permit these boundary conditions to be satisfied for either
of the pure positive or negative helicity eigenstates. The boundary conditions can be satisfied
by a mix of eigenstates if; andg_ are such thak, and K_ take a common value:

k2 —q2=K?=k*—q>. (14)

Then combining the two helicity eigenstates with amplitudes 1 A&mgives an electric field
with components

[g4+5+ + Ag_s_, kycy — Ak_c_,iK(cy + Ac_)] gk~ (15)
wheress = Sin(g+z + ¢+), c+ = €09q+z + ¢+). The conditionsE, = 0 andE, = 0 at
z = 0 andz = d are satisfied if

g+ Sing, + Ag_sing_ =0 ki cosp, — Ak_cosp_ =0 (16)
q+Sinx, + Ag_siny_ =0 k,cosy, — Ak_cosy_ =0

where x+ = g+d + ¢+. (B, is proportional toE, from equation (3) for the curl oF, and
will be zero at the boundaries K, is zero there.) Thus

_ _4+Sin¢s ki COSpy g4 Sinxy _ ki COSx+ (17)
g_sing_  k_cosp_ g_siny_  k_cosy_ "
It follows that the dispersion relations (expressikigas a function ok) are contained in
d+ tang, + - tang_ =0 (18)
ky k_
d+ tany, + - tany- =0. (29)
ky k_
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In the achiral limit there are TM and TE modes:
T™M: ¢. >0, A—1 E~][gsingz,0,iK cosgz]e* (20)
TE: ¢ —> /2, A— —1, E ~|[0,singz, 0]¢X~. (21)
In both casegd = mm with m an integer(m = 0 is possible only for the TM case, which
then becomes a TEM mode), so the achiral wavenumber is obtainedkfeomw/c by
K = (kK — ¢*)"? = [k — (mm/d)?] /2. (22)

The TM and TE modes are degeneratesoe= 1 in the achiral limit: figure 1 shows
the dispersion relations, which in this case are straight lines of unit slope iKithersus
k? diagram, originating at the points= mx/d, K = 0. We expect chirality to remove the
degeneracy, in which modes with different fields have the same dispersion relation, except
for the nondegenerate TEM mode.

m=0 1 2 3 4
8
2
(Kd/r)
6
) /
2
(o]
01 4 9 16 25

(kd/m)2

Figure 1. Dispersion relations for propagating modes in a parallel-plate waveguide filled with an
achiral medium. The wavevector i, the angular frequency isk/n, wheren is the refractive
index of the slab. The spacing between the conducting plai¢saad we plot(K d/)? versus
(kd/m)% = (2d/»)2. The straight lines originate &t/ = mx, and form > 0 represent both TM

and TE modes.

The equations (17) are satisfied by
X+ = (mx +q+d)/2 ¢ = (m —q+d)/2 (23)
for zero or integer, provided
Z—i tan(er /2 + q,d)2) + Z’; tan(ex/2+q_d/2) = 0. (24)
For zero or evert the dispersion relation is determined by
Z—i tan(q.,d/2) + Z—: tan(g_d/2) = 0 (25)

and the mixing ratio is

_ kycodg4d/2) g4 sin(qd/2)

Aan = 1~ cosq_d/2) q_sing_d/2)"

(26)
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For even¢ we havecy = co9g+¢)cod¥n/2) and sy = sin(g+¢)cos¢r/2) where
¢ =z —d/z. Thus the transverse components of the electric fi&ld and E;) are even
in ¢, the displacement from the plane midway between the conducting plates bounding the
chiral slab.

For odd¢ the relation betweelk andk (i.e. between the propagation wavevector and
the frequency) is found from

9% cot(q.d/2) + Z-* cotlg_d/2) = 0. 27)
+ -
For odd ¢ we havecy = —sin(g+¢)sinér/,), s+ = coYg+¢)sin(ér/,), and so the

transverse components of the electric field are odg. iThus the modes may be classified
into even and odd, as was assumed by Mahmoud [7]. The mixing ratio fof dsld

kysing+d/2) g4+ co8q+d/2)

k_sin(g_d/2) ~ q_codq_d/2) 29

Acot =

4. Properties of the dispersion relations

In the chiral slab at the cut-of = 0 we haveq, = k., andg_ = k_. The conditions
(18) and (19) then imply ta,d) + tantk_d) = 0, which is solved bykd = mn, since
ki = k(1+y/n). Thus all modes made up from the two chiral eigenstates have dispersion
relations which start ak = 0 with the zero-chirality valueg = mn/d.

We first examine the ‘TEM’ mode, the chiral analogue of the= 0 TM case which
hasK = k. Itis clear that (25) cannot be satisfied if bath andg_ are real and less than
/d. We write G for y/n; thenky = k(1 4+ G) and

g3 = k*> — K? + (£2G + GHk?. (29)
We take (for the moment) the chiral index to be positive. Thery, will be real and
q— = ilg—| will be imaginary, with

9> =1+ Gk - K> |g_-P=K*—(1-G)%** (30)
and

g2 +1q-1? = 4°G . (31)

Equation (25) now reads

lg—|tanh(|q_|d/2) _

Z—i tan(g.d/2) = - (32)
At small kd this has the solution
K? =k*{1- G*[1- (kd)*(1— G*)/3]} + O{G*(ka)®} (33)

andg, and|q_| are both equal t&(2G)*? to lowest order inG.
At large kd we see from (32) that, d must tend tar from below; we setj,d =7 —§
in (31) and (32) and solve fat:

1-G

s=m (kdv/G) ™" + O(kdv/G) 2. (34)
1+G
Thus the asymptotic behaviour of the dispersion relation is
2 1-G 2
K2=12 -2 11 =77 2 1, 0owdvG)2. 35
i dz{ 1+deﬁ} (Ve (%
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This relation is in agreement with the numerical finding of Mahmoud [7] that, when the
chirality index is positive, the high-frequency limit of each mode has the propagation
wavevector approaching, .

As k — 0 we find from (30), (33) and (26) that

1+G
-G’
Thus the ratio of negative to positive helicity in the = 0 mode tends to unity as the

chirality index tends to zero, which justifies the label ‘TEM’ for this mode. At latdene
have, using (36),

qr — m/d lg_| = 2k~/G A— 0. (37)

g5 — 2G(1+ G)k? lg_|?> = 2G (1 — G)k? A— (36)

Thus the positive helicity eigenstate dominates in this mode at high frequency, in accord
with the resultk — k, deduced from (35).
We now look at the modes that start in pairskdt= mm, with m > 1. In the achiral

limit these occur in degenerate pairs, the ,Jind TE, modes, with negative to positive
helicity field ratiosA = 1 andA = —1, respectively. For the achiral modes starting at
kd = mm, K? = k? — (mm/d)?, so thatgd is fixed atmsm. For the chiral slab we find from
equations (25) and (27) that neat = m,

(1-G??
— G2 4 (—)m2G sinmn G)/mn
where the minus sign applies to the tangent relation (25) and the plus sign to the cotangent
relation (27). Thus the transverse wavenumbgersdefined byg? = k2 — K2, are

g+ = 1+ G)ymn/d + O[k* — (mm/d)?]. (39)
From this result and equations (26) and (28) we find that-atmx /d the modes satisfying
the tangent relation (25) have mixing ratio
1+G cos[l+Gmn/2] 1+G
1-G cos[1—G)ymn/2] 1-G

while those satisfying the cotangent relation (27) have ratio of negative to positive helicity
amplitudes

K? = [k = o/ d)?) ¢ + O[K? — (mr/d)?]* (38)

Atan —

=" (40)

14+ G cos[(1+ G)ymn/2] 1+G
1-G cosf(l1—G)mn/2]  1-G
Thus for evenn the¢ = even (tangent) modes are ‘TM’, and the odd (cotangent) modes
are ‘TE’, neark = mm/d. For oddm the assignments of ‘TM’ and ‘TE’ characteristics are
reversed.

At largekd them > 0 modes become predominantly of positive helicity character, if the
chirality indexy = Gn is positive. We look at the tangent relation (25) first. &t = mm,
g+d = (1+G)mm (both real form > 0); askd increases we expegt.d/2 to tend to an odd
multiple of 7 /2 from below, and;_ to become imaginary. We sgi.d = 2M + 1) —§
in (25) and solve for the small quantidyto find

Aot = —

(=", (41)

1-G -1
gid — M + Dx {1 - H—G(kd\/E) } (42)

Thusg? tends to a constant anki® = k2 — ¢2 differs fromk2 by a constant, in the limit
of largekd. In the same limitg? = k2 — K? = ¢2 — (k* — k?) = ¢ — 4k*G decreases
linearly with k2, with slope—4G.
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In the case of the cotangent relation (27) wegal = 2Nx — §, since we neeq..d/2
to approach a multiple of from below. We find

gid — 2N {1 - i—g (kdﬁ)_l} (43)

and againg? becomes negative and decreases linearly witlior large kd. In both the
even (tangent) and odd (cotangent) modes the positive helicity character dominates when
G > 0.

5. Mode cross-over

Figure 2 shows the variation of the square of the wavevektarersus the square of the
frequency. (We actually plot the dimensionless quartkyl /)? versus(kd /m)?; note that

k = nw/c = n2r /A, sokd/m = 2nd /A, wherei is the vacuum wavelength.) We see that
the behaviour of the wavevector is in accord with the discussion of the previous section;
in addition we note two crossings of the dispersion relations for even and odd modes of
the samen. Thus it is possible for the two modes of different symmetry to have the same
phase speed./K at a given angular frequeney.. This can happen wheq,d andq_d

are both integer multiples of:

gi+d = Pm and g.d=Nm (44)

with P and N both even, or both odd. We then have

K2 — K? = (Pn/d)’ and k% — K?= (Nn/d)? (45)
+—-4+ - + - + -
/ ,
8
2
(Kd /)
[
4
2
0
01 4 9 16 25
(kd/m)?

Figure 2. Dispersion relations for a waveguide formed from a chiral slab between conducting
plates. The refractive indices of positive and negative helicity eigenstates(hee G). The
(Kd/n)2 versus(kd/m)? curves are plotted foG = % Modes with even transverse electric
fields have dispersion curves determined by the tangent relation (25) and are denoted by *
Modes with odd transverse electric fields satisfy the cotangent relation (27) and are denoted by

‘—'. Note thatk 2 tends tok? minus a constant for larg&d (whenG > 0).
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and sincek. = (1 + G)k, the difference of the left-hand sides of (45) gives
k2 — k? = 4Gk?, so that cross-overs can occur when

kd\?> P2— N?
(;) T (46)

where P and N are integers. The two cross-overs in figure 2, which is drawnGfes %
occur at(P, N) = (5,1) and (7, 1).

6. Chiral slab with dielectric cladding

Dissipation of energy in the bounding metal plates at optical frequencies will be high, so
we will now examine the case of a chiral slab with dielectric cladding. As above, we
will characterize the chiral medium by the constaatg and y, and we will assume the
bounding dielectric to be thick compared to the wavelength and be characterizecbg

w1, andn = (e1u1)Y2. The thickness of the chiral slab dsas before.

The previous analysis showed that the possible propagating modes within the chiral slab
havey andz components of the electric field which are even or odd in the displacement
from the mid-plane of the slab. We take the dielectric cladding to ocd¢tipy d/2, and
look for exponentially decreasing (evanescent) electric field solutions of the form

E1 =Xy, Y1, Z1]exp[iKx — |q1l(z — d/2)] (47)
for z > d/2. From equations (8) with = 0 we have, withk; = niw/c,

(11> + k3 X1 +iK|q1|Z1 = O

(Iq1l* + k5 — K*)Y1 =0 (48)

iK g1 X1+ (kf — K*)Z1 = 0.

The determinant of the coefficients &, ¥; and Z; factors to(k? + |¢1]? — K?)%3, and
setting it to zero gives

11> = K? — k% (49)

as expected for an evanescent wave with= i|q1|. From equations (48) and (49) we see
that thex andz components of; are related by

lg11Z1 = 1K X;. (50)
The magnetic field in the cladding, frol8; = u; H; and (3), is given by

C C . . .

H; = —V x E1 = ——[|q1]Y1, —|q1|X1 — iK Z1,iKY1] exp[iKx — |q1|(z — d/2)] .
lopy lwp

(51)

The even modes in the chiral slab are made up, as before, from a mix of positive and
negative helicity eigenstates: from (9) and (13) we have

E®=[q.s; +Aq_s_,kycy — Ak_c_,iK(cy + Ac_)]exp(iK x) (52)

wheresy = sin(g+z) andcy = cosg+z) andg2 = k2 — K2. The modes withE, and E,
odd inz are

E°=[gicy +Aq_c_, —kys, + Ak_s_, —iK(sy + As_)]exp(iKx). (53)
From equations (3) and (4), thd field is determined in terms df:

i
H=-vxE+2E. (54)
iwp u
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The boundary conditions, namely continuity of the tangential comporgent%’,, H, and

H, of the electric and magnetic fields, give four relations at 4/2 (a similar set obtained

at z = —d/2 gives no new information, since even or odd symmetry has been assumed).
After eliminating the unknown coefficient¥, Y3 and A from the four relations, we are

left with the dispersion relation linkin& to k = nw/c. For the even and odd modes, the
dispersion relations are, respectively,

2

()
g1l (epa + ) (T + T-) — 2k(K2T, T- + |q1?) =0 (55)

2

w
g1l + e1) 5 (Cy + C) + 2k(K{CLC + |1l?) = 0 (56)

where
T. = T-tangsd/2)  Ce=COlgsd/2). (57)
+ +

For comparison, the even and odd mode equations for the chiral slab between conducting
plates, (25) and (27), can be written as

T,+7-=0 and C,+C_=0. (58)

The equations (58) follow from (55) and (56) in the limit of perfectly conducting plates,
for which ¢; tends to minus infinity.

For an achiral waveguidey — 0) we haveT, = T_ and the left-hand side of (55)
factors to give

gtan(gd/2) = |q1li/pa qtan(qd/2) = |qile/e1 (59)

which are the known dispersion relations for even TE and even TM modes, respectively.
Likewise, C;. = C_ in the achiral limit, and the left-hand side of (56) factors to give the
dispersion relations for odd TE and odd TM modes:

—q cot(qd/2) = |q1li/ 11 —q COt(qd/2) = |q1l€/e1. (60)

When u = p1 equations (55) and (56) reduce to those of [6], where dispersion relations
are plotted for four values afi ranging from 0001 to QO5.

One difference between metallic and dielectric cladding for the chiral slab is in the
cut-off frequencies: for metal plates the cut-off is independent of the chiral ipdex the
constitutive relations (2) used here, with= nw/c having cut-off valuesk. = mm/d with
integerm. In contrast, the dielectric cladding cut-offs, found from (55) and (56) by setting
|g1] equal to zero, are given by

kf — L/d (61)

J1—n3/n3

(n% < n? is assumed The even modes have evenand the odd modes have odd For
givenm greater than zero, equation (61) gives two different frequencies at which propagation
of guided waves begins.

The m = 0 mode bifurcates at zero frequency: in general, the dispersion relation (55)
has two solutions beginning &t= 0, K = 0. To examine the behaviour near zero frequency,
we set

K? = k2[a® 4 B2(kd)?> + - -] (62)
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and find thatw = n1/n (so thatk — k; and|q1|> = K2 — k3 — 0 at zero frequency), and
that 8 satisfies a quadratic equation,

2
4(1—G2)/32—2(3+ﬂ) (1—G2—”—;)/3
€ " n

n2 n2 n2
+n—; [(1+ G)? - n—;} [(1 - G)?— n—;} =0. (63)
WhenG is zero, the values g8 satisfying (63) are
2 2
" n € n
Bre = 2—; (1— n-;) Brm = 2—2 <1— n—;) (64)

which correspond, respectively, to the achiral TE and #M= 0 modes, for which the
dispersion relations were given in (59). The solutions of (63) are given by (64) plus terms
of even order in the chirality parametér, when . = u; the second-order terms simplify

to

Apre = 2EL/*G” _ (/O +3er/e — (@1/€)* + (e1/€)°] G
(1—e1/e)? 2(1 — €1/€)? ’

Thus for smallG the propagating modes are predominantly TE or TM. Note, however, the

denominatorg1 — €;1/¢)?: these are small when the dielectric constant of the cladding is

close to that of the chiral slab. Thus index matching enhances the chirality effects, as has

been noted in other circumstances [17].

As |G| increases to the value-1 (e;u1/epn)? = 1 —ny/n, the TE or TM character is
lost: the roots of (63) are now zero and

n—ny (e W
— 4+ —). 66
2”-”1<E+M) (69)

The form of (66) indicates an equal mix of TE and TM @t= +(1 — ny/n). At this

value of |G| eitherk, or k_ becomes equal té,: for example, ifG — 1 —ni/n, k- =

(1— G)k — nik/n = kq. In fact, we can see directly from (55) that whén=1—n1/n, a
formal solution valid for allK is K = k;, because thep; andg_ are both zero. However,
wheng; is zero the fields in the cladding do not decrease \vthand so theg8 = 0,41 =0

limit cannot be attained. An approach to this limit can be seen in the numerical explorations
of [6]: see, in particular, their figure 3.

APt = (65)

7. Discussion

We have presented analytic results for a chiral slab waveguide, bounded by either conducting
plates, or by a dielectric cladding.

The conducting plate waveguide, which may find use at microwave frequencies, showed
that propagating modes of different symmetry may cross. The phase ep&e the same
for both modes at the cross-over frequency, which was given by (46).

In the case of dielectric cladding, cross-over is also possible: for givemw/c we
look for solutions of (55) and (56) with comman. andg_. Since

2 K2

the cross-over condition arising from the simultaneous solution of (55) and (56) becomes a
quadratic inT, (or in T_). | have not been able to find a simple criterion for cross-over
analogous to (46).
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We have also calculated the low-frequency dispersion relation in the form (62), from
which we can deduce the phase and group speeds of both of the modes in terms of the
coefficientg given by the quadratic equation (63):

_a)_ck_c 1 1/n 2(,3kd)2+
Up_K_nK_nl 2\ nq

2
do _c & 0[1 3(;) (,Bkd)z—i—...]

1

(68)

YUK Tadk  m| 2
An interesting situation arises when the chiral ingeis close to the difference between
the average index of the chiral medium and the index of the cladding:

ly| > n—mn or |G| > 1—ny/n. (69)

In this special case, the analysis given in section 6 shows that for one of the even modes
B — 0, so dispersion tends to zero, both phase and group speeds tendifa; toThe
limit of zero dispersion cannot be attained for the waveguide configuration discussed here,
but zero dispersion is perhaps achievable for more complicated chiral waveguides.

In all cases the propagating modes have predominantly TE or TM character close to the
cut-off frequency, provided the chirality is ‘small’. But in the dielectric-clad waveguide,
we have seen that the chiral indexis to be compared with the difference between the
slab and cladding indices, — n1, which may itself be small. Thus chirality is enhanced
by index matching, and numerically small chiral indices can be made to have a large
effect.
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