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a b s t r a c t 

The T -matrix formally describes the solution of any electromagnetic scattering problem by a given parti- 

cle in a given medium at a given wavelength. As such it is commonly used in a number of contexts, for 

example to predict the orientation-averaged optical properties of non-spherical particles. The T -matrix 

for electromagnetic scattering can be divided into four blocks corresponding physically to coupling be- 

tween either magnetic or electric multipolar fields. Analytic expressions were recently derived for the 

electrostatic limit of the electric-electric T -matrix block T 22 , of prolate spheroids. In such an electrostatic 

approximation, all the other blocks were zero. We here analyse the long-wavelength limit for the other 

blocks ( T 21 , T 12 , T 11 ) corresponding to electric-magnetic, magnetic-electric, and magnetic-magnetic cou- 

pling respectively. Analytic expressions (finite sums) are obtained in the case of spheroidal particles by 

expressing the fields with solutions to Laplace’s equation, expanding the fields in terms of spheroidal 

harmonics and applying the boundary conditions. Similar expressions are also presented for the auxil- 

iary matrices in the extended boundary condition method, often used in conjunction with the T -matrix 

formalism. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The T -matrix is a widely used semi-analytic technique for the

study of electromagnetic scattering by particles [1–8] . In this ap-

proach, the electric and magnetic fields are expanded as series of

vector spherical wavefunctions, and the T -matrix defines the linear

relationship between the expansion coefficients of the incident and

scattered fields. The T -matrix can be computed in many ways but

a common approach is the extended boundary condition method

(EBCM) [9] , which involves the division of two matrices whose ma-

trix elements are given by integrals on the particle surface. It may

also be possible to obtain the T -matrix directly from solving the

problem from the boundary problem, which can be used to de-

duce analytic results for particles of simple shapes, for example

spheroidal vector wave functions have been used to calculate the

T -matrix for a spheroid [10] . This is the approach we apply here,

but in the long-wavelength limit 

This manuscript follows from Ref. [11] , where analytic expres-

sions were obtained for the long-wavelength limit of the T -matrix
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lock for electric-electric multipole coupling, T 22 , of a prolate

pheroid. This limit is then equivalent to the solution of an elec-

rostatic (or quasistatic) problem. The matrix elements were deter-

ined by solving the corresponding boundary problem (involving

aplace’s equation) using spheroidal harmonics, and applying the

xpansions relating spherical/spheroidal harmonics [12,13] to ex-

ress the scattered field in terms of spherical harmonics and from

here extract the entries of the T -matrix. Here we extend the ap-

roach to the other blocks governing interactions between electric

nd magnetic multipoles. The problem is more complicated as it

an no longer be reduced to simply solving Laplace’s equation, but

imilar analytic results can still be found. Note that unlike for T 22 ,

here the quasistatic limit coincides with an exact electrostatics

roblem, the quasistatic limits of the other blocks are only physi-

ally meaningful as approximations of the corresponding time har-

onic problem. This analytic limit may nevertheless be useful for

undamental studies of the T -matrix method, for example in in-

estigations of its convergence [14] or related problems associated

ith the Rayleigh hypothesis [15] . It may also be used as a substi-

ute for high order elements in cases when they are well approxi-

ated by their lowest order approximation [16] . 

The manuscript is organized as follows. Section 2 is a brief

ecap of the T -matrix formalism and of the main notations.

https://doi.org/10.1016/j.jqsrt.2018.12.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2018.12.017&domain=pdf
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ection 3 summarizes the results obtained in Ref. [11] for T 22 .

ection 4 modifies the approach of Ref. [11] to obtain the qua-

istatic limit of T 21 , T 12 for general axisymmetric particles and de-

ive analytic expressions for the matrix elements. Section 5 further

odifies the approach to obtain T 11 . Section 6 discusses these re-

ults, in particular proposes a definition for the generalized depo-

arization factors for spheroids, and exploits these to discuss the

ultipolar plasmon resonance conditions for metallic spheroids. 

. General approach/notations 

.1. T-Matrix formalism 

We first summarize the T -matrix formalism for electromagnetic

cattering [9] . We consider some known time-harmonic external

lectromagnetic field E e , H e incident on a non-magnetic particle

n a non-absorbing medium. A time dependence e −iωt is implied.

he permittivity inside and outside the particle are denoted ε i ,

o , with their ratio ε = εi /εo and relative refractive index s = 

√ 

ε
possibly complex and wavelength dependent). The wavenumber

nside and outside the particle are denoted k i and k o with k i = sk o .

he external field creates an internal field E i , H i inside the scatterer

nd a scattered field E s , H s , so that the field outside the particle is

 o = E e + E s , H o = H e + H s . The fields are expanded as series of

ector spherical wave functions: 

 e = E 0 
∑ 

nm 

a m 

n RgM 

m 

n ( k o r ) + b m 

n RgN 

m 

n ( k o r ) , (1) 

 e = H 0 

∑ 

nm 

a m 

n RgN 

m 

n ( k o r ) + b m 

n RgM 

m 

n ( k o r ) , (2) 

 i = E 0 
∑ 

nm 

c m 

n RgM 

m 

n ( k i r ) + d m 

n RgN 

m 

n ( k i r ) , (3) 

 i = H 0 s 
∑ 

nm 

c m 

n RgN 

m 

n ( k i r ) + d m 

n RgM 

m 

n ( k i r ) , (4) 

 s = E 0 
∑ 

nm 

p m 

n M 

m 

n ( k o r ) + q m 

n N 

m 

n ( k o r ) , (5) 

 s = H 0 

∑ 

nm 

p m 

n N 

m 

n ( k o r ) + q m 

n M 

m 

n ( k o r ) , (6) 

here E 0 is the incident electric field strength and H 0 =
 0 k o / (iωμ0 ) . RgM, RgN denote the regular wavefunctions while M,

 denote the singular wavefunctions, corresponding to magnetic

nd electric multipolar fields, respectively. Our definitions differ by

(−) m to those in appendix C of [6] . 

The problem is to determine the coefficients c m 

n , d 
m 

n , p 
m 

n , q 
m 

n that

atisfy the boundary conditions at the surface of the scatterer

with 

ˆ n the unit normal vector): 

ˆ n · E i = 

ˆ n · E o , ˆ n × E i = 

ˆ n × E o , 

ˆ n · H i = 

ˆ n · H o , ˆ n × H i = 

ˆ n × H o , (7) 

nd the Sommerfeld radiation condition for the scattered field at

nfinity. 

By linearity of Maxwell’s equations, the coefficients are related

y linear expressions commonly expressed in matrix form as: 

p 

q 

]
= 

[
T 

11 T 

12 

T 

21 T 

22 

][
a 
b 

]
= T 

[
a 
b 

]
, (8) 

hich defines the T -matrix. The column vectors a, b, c, d, p and q

ontain a m 

n , b 
m 

n c m 

n , d 
m 

n , p m 

n and q m 

n as components, for all n and m .
ithin the EBCM, one typically also defines the P - and Q -matrices

s: 

a 
b 

]
= 

[
Q 

11 Q 

12 

Q 

21 Q 

22 

][
c 
d 

]
, (9) 

p 

q 

]
= −

[
P 

11 P 

12 

P 

21 P 

22 

][
c 
d 

]
. (10) 

nd we here also introduce the matrix R = Q 

−1 . Note that

ef. [9] uses RgQ instead of P . 

For axisymmetric particles (such as spheroids), a major simpli-

cation is that all matrices are decoupled for each m , and we may

herefore treat each m separately. The matrix elements for a given

 will then be denoted T 
i j 

nk | m 

. 

Moreover, for particles with reflection symmetry with respect

o the z = 0 plane (like spheroids), half of the matrix elements are

ero, namely: 

 

11 
nk = A 

22 
nk = 0 n + k odd , (11) 

 

21 
nk = A 

12 
nk = 0 n + k even , (12) 

or A = P, Q, R, T . 

.2. Spheroidal coordinates and harmonics 

We consider a dielectric spheroid (prolate or oblate) of semi-

eight c along the z -axis and semi-width a along x, y . It will be

onvenient to define oblate spheroidal coordinates and parame-

ers by exactly the same formulae, since this choice means the

 -matrix expressions for prolate and oblate spheroids will also

ave exactly the same expressions. We define the focal parameter

f = 

√ 

c 2 − a 2 . Then prolate spheroids have c > a , half focal-length f ,

nd oblate spheroids have a > c , focal disk radius −i f = 

√ 

a 2 − c 2 .

he spheroidal coordinates ξ , η are defined in terms of r + , r −, the

istance from the top and bottom focal points: 

= 

r + + r −

2 f 
, η = 

r + − r −

2 f 

 

± = 

√ 

r 2 ± 2 f r cos θ + f 2 . (13) 

or both prolate and oblate. ξ = ξ0 = c/ 
√ 

c 2 − a 2 defines the sur-

ace of our scatterer. For prolate spheroidal coordinates, ξ 0 ranges

rom 1 (needle) to ∞ (large sphere), while for oblate coordinates,

0 ranges from 0 (disk) to −i ∞ (large sphere). 

The solution of Laplace’s equation in spheroidal harmonics in-

olves the product of Legendre functions of the first or second kind

 

m 

n (ξ ) , or Q 

m 

n (ξ ) , with P m 

n (η) . Their derivatives are denoted with

 prime ′ . Several similar definitions exist for these, and we will

ere use the ones specified in the Appendix, which ensure that all

erived formulae are also correct for oblate spheroids. 

.3. Quasistatic/long-wavelength approximation 

The term quasistatic here means that the wavelength of the

ight both inside and outside the particle is long in comparison to

he particle size. As per Ref. [17] we shall define a size parame-

er X = k o c, where for small particles relative to the wavelength,

 � 1 and the fields may be considered as asymptotic expansions

n powers of X , and here we consider just the lowest two orders.

his approximation also requires k i c = sX � 1 , so the relative re-

ractive index s must not be too large. This definition for X is con-

enient here, but as shown in Ref. [17] , it is usually more relevant

o define the size parameter in terms of the radius of the sphere of

quivalent volume. One should also note that spherical Bessel func-

ions of higher order n can be well approximated by their domi-

ant term (small X approximation) for up to X � n [16] , so one can
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expect that our final expressions for matrix elements for large n, k

will be valid for relatively large X . 

In this analysis it is crucial to be aware of how the basis func-

tions and matrix elements depend on X . In the near field, X ≈ k o r : 

RgM 

(0) 
nm 

= O(X 

n ) , M 

(0) 
nm 

= O(X 

−n −1 ) , (14)

RgN 

(0) 
nm 

= O(X 

n −1 ) , N 

(0) 
nm 

= O(X 

−n −2 ) , (15)

and E 0 = O(X 0 ) while H 0 = O(X 1 ) . The quasistatic limit of the Q -

matrix and R -matrix elements take a special form for a spheroidal

particle [18,19] and the order of the dominant terms for all matri-

ces are summarized below [17 , 18] : 

Q 

11 
nk = O(X 

[ n<k ](k −n +2) ) , Q 

21 
nk = O(X 

[ n<k ](k −n +1) ) , 

Q 

12 
nk = O(X 

[ n<k ](k −n +1) ) , Q 

22 
nk = O(X 

[ n<k ](k −n ) ) , (16)

where [ n < k ] = 1 if n < k and 0 otherwise. For general axisymmet-

ric particles the [ n < k ] is not present. For P : 

P 11 
nk = O(X 

k + n +3 ) , P 12 
nk = O(X 

k + n +2 ) , 

P 21 
nk = O(X 

k + n +2 ) , P 22 
nk = O(X 

k + n +1 ) . (17)

T has identical behaviour as P , and R as Q , so: 

R 

i j 

nk 
∝ Q 

i j 

nk 
and T i j 

nk 
∝ P i j 

nk 
For i, j = 1 , 2 . (18)

The aim of this work is to find analytic expressions for these

dominant terms for all matrix elements for all matrix elements

of T for all n, k . In Ref. [11] , expressions were derived for the T 22

block, while in Ref. [17] , expressions were obtained for all blocks

but only for n, k ≤ 3. 

In the process, we will also derive matrix elements for P, Q , and

R , except for the lower triangular parts of Q and R , because they

reduce to zero in the limit of this problem. 

3. Summary for 22 blocks 

For completeness we summarize the quasistatic limit for the

elements of P 

22 , Q 

22 , R 

22 , T 22 . These results were derived in

Ref. [11] for P, Q , and T . They are here slightly rearranged and the

corresponding expression for R is also given. 

P 22(0) 
nk | m 

= −is k −1 (k o f ) 
n + k +1 B 

m 

n B 

m 

k (s 2 − 1)(ξ 2 
0 − 1)(−) m 

×
min (n,k ) ∑ 

p= | m | 

e nk e np (2 p + 1) P −m 

p (ξ0 ) P 
m ′ 
p (ξ0 ) 

(n − p)!!(n + p + 1)!!(k − p)!!(k + p + 1)!! 
, (19)

Q 

22(0) 
nk | m 

= s k −1 δnk + s k −1 (k o f ) 
k −n 

B 

m 

k 

B 

m 

n 

(s 2 − 1)(ξ 2 
0 − 1) 

×
k ∑ 

p= n 
e nk e np 

(−) (p−n ) / 2 (2 p+1)(n+p−1)!! 

(p−n )!!(k−p)!!(k+p+1)!! 
Q 

−m 

p (ξ0 ) P 
m ′ 
p (ξ0 ) , (20)

R 

22(0) 
nk | m 

= s 1 −n (k o f ) 
k −n 

B 

m 

k 

B 

m 

n 

×
k ∑ 

p= n 
e nk e np 

(−) (p−n ) / 2 (2 p + 1)(n + p − 1)!! 

(p − n )!!(k − p)!!(k + p + 1)!! 

1 

1 + (s 2 − 1) L m 

p (ξ0 ) 
, (21)

T 22(0) 
nk | m 

= i (k o f ) 
n + k +1 B 

m 

n B 

m 

k (s 2 − 1)(ξ 2 
0 − 1)(−) m 

×
min (n,k ) ∑ 

p= | m | 

e nk e np (2 p + 1) 

(n − p)!!(n + p + 1)!!(k − p)!!(k + p + 1)!! 

P −m 

p (ξ0 ) P 
m ′ 
p (ξ0 ) 

1 + (s 2 − 1) L m 

p (ξ0 ) 
, (22)
here 

 

m 

n = 

1 

(2 n − 1)!! 

√ 

(n + 1)(n + m )!(n − m )! 

n (2 n + 1) 
, (23)

 nk = 

{
1 n + k even 

0 n + k odd 

. (24)

We have also introduced the generalized depolarization fac-

ors: 

 

m 

n = (ξ 2 
0 − 1) P m ′ 

n (ξ0 ) Q 

−m 

n (ξ0 ) (25)

hich will be further discussed in Section 6.2 . 

While in Ref. [11] the spheroid was assumed to be prolate,

hese formulae also apply to oblate spheroids using the definitions

f the Legendre functions given in the Appendix. 

. Quasistatic limit of T 21 , T 12 

.1. General approach 

In Ref. [11] , the quasistatic limit of T 22 was found by solving

n equivalent electrostatics problem, where the Helmholtz equa-

ion reduces to Laplace’s equation. Here T 21 (and T 12 ) are zero to

owest order in X , so the next order in X must be considered. 

We focus on obtaining T 21 , as T 12 can then be obtained

hrough 

 

12 
nk | m 

= −T 21 
kn | m 

. (26)

To extract the quasistatic limit of T 21 , we consider a particular

uasistatic excitation, consisting of only magnetic multipoles - that

s 

 e = E 0 
∑ 

nm 

a m 

n RgM 

(0) 
nm 

(k o r ) , (27)

 e = H 0 

∑ 

nm 

a m 

n RgN 

(0) 
nm 

(k o r ) . (28)

he superscript (0) denotes the lowest non-zero order in X . Con-

idering the orders of the spherical vector wavefunctions given in

14) - (15) , we will impose that the coefficients a m 

n depend on X as

 

m 

n ∝ X 1 −n , so that all multipole terms in the expansions are of the

ame order in X , and as a result we have E i , H i = O(X 1 ) , with ev-

ry term in the sum being O(X 1 ) . It can then be shown that all

lements of T 21 will be obtainable by reduction to the lowest non-

ero order of X . A possible physical example where a m 

n ∝ X 1 −n , is a

ow frequency radiating magnetic dipole located outside the scat-

erer. If we instead considered a plane wave excitation, only the

owest order multipoles would be non-negligible, and we would

nly obtain information about the low order entries of the scatter-

ng matrices. 

We now analyse which terms in the series of the incident and

cattered fields can be neglected. We also need to take into ac-

ount the dependence of lowest order of T 21 , R 

21 , which were

iven in Eqs. (16) –(18) . The significant parts of the internal and

cattered fields to O(X 1 ) will be 

E i = E 0 
∑ 

n,m 

c m 

n RgM 

(0) 
nm 

(k i r ) + d m 

n RgN 

(0) 
nm 

(k i r ) , 

H i = sH 0 

∑ 

n,m 

c m 

n RgN 

(0) 
nm 

(k i r ) 

E s = E 0 
∑ 

n,m 

q m 

n N 

(0) 
nm 

(k o r ) , 

 s = O(X 

2 ) . (29)
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n the long-wavelength limit the magnetic field does not interact

ith the particle. The magnetic boundary conditions are therefore

olved simply by setting the internal magnetic field identical to the

xternal field, that is 

c m 

n = s −n a m 

n ⇔ Q 

11(0) 
nk 

= δnk s 
n , 

R 

11(0) 
nk 

= δnk s 
−n . (30) 

his also means that the magnetic-multipolar part of the electric

eld is equal to the magnetic-multipolar part of the incident elec-

ric field. However, this alone does not satisfy the electric bound-

ry conditions, so the problem now is to solve for the coefficients

 

m 

n and q m 

n , knowing both a m 

n and c m 

n . For this problem the matrix

elations between the known and unknown coefficients are 

 = T 

21 a , d = R 

21 a , (31) 

In the long-wavelength limit the vector spherical wave func-

ions are 

gM 

(0) 
nm 

= γ m 

n 

k n 

(2 n + 1)!! 
r × ∇[ r n P m 

n ( cos θ ) e imφ] , (32) 

gN 

(0) 
nm 

= γ m 

n 

(n + 1) k n −1 

(2 n + 1)!! 
∇[ r n P m 

n ( cos θ ) e imφ] , (33) 

 

(0) 
nm 

= γ m 

n 

(2 n − 1)!! 

ik n +1 
r × ∇[ r −n −1 P m 

n ( cos θ ) e imφ] , (34) 

 

(0) 
nm 

= γ m 

n 

in (2 n − 1)!! 

k n +2 
∇[ r −n −1 P m 

n ( cos θ ) e imφ] , (35) 

here γ m 

n = 

√ 

2 n + 1 

4 πn (n + 1) 

(n − m )! 

(n + m )! 
. (36) 

his means we can express the electric field as: 

 e = r × ∇U, (37) 

 i = r × ∇U − ∇V i , (38) 

 s = −∇V s , (39) 

ith ∇ 

2 U = ∇ 

2 V i = ∇ 

2 V s = 0 . (40) 

nserting (37) - (39) into the electric boundary conditions 1 : 

∂ n V i − ∂ n V s = (ε − 1) ̂  n · E e | S , V i = V s | S . (41) 

ith ∂ n = 

ˆ n · ∇ . 

For axisymmetric particles, ˆ n · ˆ φ = 0 so 

 

 · E e = ( r × ̂ n ) · ∇U = 

̂ n ·̂ θ

sin θ

∂U 

∂φ
(42) 

hich can be obtained directly from the component-wise expres-

ions for the vector spherical harmonics (see Ref. [9] App. C). We

an obtain expressions for T 21 by solving for V s to obtain q in

erms of a , and comparing this solution with the matrix expres-

ion (31) . This approach can also be used for R 

21 . 
1 The last equality comes from requiring the tangential derivatives of V i and V s 
e equal at the surface, which implies V i and V s are equal up to a constant which 

an be neglected. 

q

.2. Analytic expressions for spheroids 

Spheroidal particles are a special case where there exists a full

nalytic solution in spheroidal coordinates. This provides a means

o find analytic expressions for the entire T, P , and Q matrices. We

ollow a similar approach to Ref. [11] : solve the boundary problem

n terms of spheroidal harmonics and re-express this in terms of

pherical harmonics by applying basis transformations. We want

o solve for the potentials V i , V s , knowing U . Since U, V i , V s sat-

sfy Laplace’s equation, we can express them as series of spheroidal

armonics: 

 = E 0 
∑ 

n,m 

A 

m 

n P 
m 

n (ξ ) P m 

n (η) e imφ, (43) 

 i = E 0 
∑ 

n,m 

B 

m 

n P 
m 

n (ξ ) P m 

n (η) e imφ, (44) 

 s = E 0 
∑ 

n,m 

C m 

n Q 

m 

n (ξ ) P m 

n (η) e imφ. (45) 

n light of evaluating the boundary conditions, for a spheroid we

ave ˆ n = 

ˆ ξ, and 

ˆ · ˆ θ = 

sin θ η√ 

(ξ 2 − η2 )(ξ 2 − 1) 
, (46) 

∂ 

∂n 

= 

1 

f 

√ 

ξ 2 − 1 

ξ 2 − η2 

∂ 

∂ξ
. (47) 

he benefit of using spheroidal harmonics is that we can simply

quate the coefficients of P m 

n (η) in the expansions. For the factor

f η in (46) , we use the following identity: 

P m 

n (η) = 

(n − m + 1) P m 

n +1 (η) + (n + m ) P m 

n −1 (η) 

2 n + 1 

(48) 

nd re-index the sums so that all terms contain P m 

n (η) . Then by

quating the coefficients we obtain 

 

m 

n = 

Q 

m 

n (ξ0 ) 

P m 

n (ξ0 ) 
C m 

n , (49) 

 

m 

n = 

i f m (ε − 1) P −m 

n (ξ0 ) 

1 + (s 2 − 1) L m 

n (ξ0 ) 
×

n −m 

2 n −1 

P m 

n −1 (ξ0 ) A 

m 

n −1 + 

n + m + 1 

2 n + 3 

P m 

n +1 (ξ0 ) A 

m 

n +1 

)
. (50) 

Now we must express this solution on a spherical har-

onic basis. The relevant relationships between the spherical and

pheroidal harmonics are 

r 

f 

)n 

P m 

n ( cos θ ) = 

n ∑ 

k =0 

αm 

nk P 
m 

k (ξ ) P m 

k (η) , (51) 

 

m 

n (ξ ) P m 

n (η) = 

∞ ∑ 

k = n 
βm 

nk 

(
f 

r 

)k +1 

P m 

k ( cos θ ) , (52) 

here the coefficients αm 

nk 
, βm 

nk 
are given in Appendix C . By sub-

tituting these expressions into the potential and electric field ex-

ressions, we find that the series coefficients must satisfy 

 

m 

p = 

∞ ∑ 

k = p 
αm 

kp 

(k o f ) k 

(2 k + 1)!! 
γ m 

k a m 

k , (53) 

 

m 

n = 

1 

γ m 

n 

ik o (k o f ) p+1 

n (2 n − 1)!! 

n ∑ 

p= | m | 
β̄m 

pn C 
m 

p . (54) 
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Combining these with the relationship between C m 

n and A 

m 

n , we

obtain an expression relating q and a which can be compared to

(31) to obtain T 21 . We can also follow a similar derivation and

obtain the quasistatic limit of R 

21 . We can then obtain expres-

sions for P 

21 and Q 

21 from their matrix relationships to T and

R . We have Q 

21 = −Q 

22 R 

21 Q 

11 , which comes from the blockwise

matrix inverse formula. Similarly, we can find R 

12 = −R 

11 Q 

12 R 

22 

and P 

12 = −T 21 Q 

11 − T 22 Q 

21 . Below we summarise the results for

all matrices: 

T 21(0) 
nk | m 

= −(s 2 − 1) 
B 

m 

n B 

m 

k 

k + 1 

(k o f ) 
n + k +2 (−) m m 

min (n,k +1) ∑ 

p= | m | 
e np e k +1 ,p 

P −m 

p (ξ0 ) 

1 + (s 2 − 1) L m 

p (ξ0 ) 

×
(p + m )(k + p + 2) P m 

p−1 (ξ0 ) + (p − m + 1)(k − p + 1) P m 

p+1 (ξ0 ) 

(k − p + 1)!!(k + p + 2)!!(n − p)!!(n + p + 1)!! 
, 

(55)

R 

21(0) 
nk | m 

= −(s 2 − 1) 
B 

m 

k 

B 

m 

n 

im (k o f ) k −n +1 

s n −1 (k + 1) 

k +1 ∑ 

p= n 
e np e k +1 ,p 

Q 

−m 

p (ξ0 ) 

1 + (s 2 − 1) L m 

p (ξ0 ) 

×(−) (n −p) / 2+ m (p + n − 1)!! 

(p + m )(k + p + 2) P m 

p−1 (ξ0 ) + (p − m + 1)(k − p + 1) P m 

p+1 (ξ0 ) 

(k − p + 1)!!(k + p + 2)!!(p − n )!! 
, 

(56)

R 

12(0) 
nk | m 

= −(s 2 − 1) 
B 

m 

k 

B 

m 

n 

im (k o f ) k −n +1 

s n n 

k +1 ∑ 

p= n 
e np e k +1 ,p Q 

m 

p (ξ0 ) ×

(−) (n −p) / 2 (p + n − 1)!! 

(k − p + 1)!!(k + p + 2)!!(p − n )!! [
(p − m )(k + p + 2) P −m 

p−1 
(ξ0 ) 

1 + (s 2 − 1) L m 

p−1 
(ξ0 ) 

+ 

(p + m + 1)(k − p + 1) P −m 

p+1 
(ξ0 ) 

1 + (s 2 − 1) L m 

p+1 
(ξ0 ) 

]
(57)

Q 

21(0) 
nk | m 

= −(s 2 − 1) s k 
B 

m 

k 

B 

m 

n 

im (k o f ) k −n +1 

k + 1 

k +1 ∑ 

p= n 
e np e k +1 ,p Q 

−m 

p (ξ0 ) 

× (−) (n −p) / 2+ m (p + n − 1)!! 

(p + m )(k + p + 2) P m 

p−1 (ξ0 ) + (p − m + 1)(k − p + 1) P m 

p+1 (ξ0 ) 

(k − p + 1)!!(k + p + 2)!!(p − n )!! 
, 

(58)

P 21(0) 
nk | m 

= (s 2 − 1) s k 
B 

m 

n B 

m 

k 

k + 1 

(k o f ) 
n + k +2 (−) m m 

min (n,k +1) ∑ 

p= | m | 
e np e k +1 ,p P 

−m 

p (ξ0 ) 

×
(p + m )(k + p + 2) P m 

p−1 (ξ0 ) + (p − m + 1)(k − p + 1) P m 

p+1 (ξ0 ) 

(k − p + 1)!!(k + p + 2)!!(n − p)!!(n + p + 1)!! 
.

(59)

The expressions for P 

21 , Q 

21 and R 

12 were simplified using the

following identity: 

r ∑ 

q = p 
e qr 

(−) (r−q ) / 2 (r + q − 1)!! 

(q − p)!!(q + p + 1)!!(r − q )!! 
= 

δpr 

2 r + 1 

(60)

which can be obtained by combining the expansions between

spherical and spheroidal harmonics (C2) and (C1) and noting their

orthogonality. 
Note that the lower triangular parts of Q 

12 , Q 

21 , R 

12 , R 

21 are

ero within this quasistatic approximation. P 

12 and Q 

12 can more-

ver be obtained through: 

 

12(0) 
nk | m 

= 

1 

s 

k + 1 

n + 1 

P 21(0) 
nk | m 

, (61)

 

12(0) 
nk | m 

= 

1 

s 

k + 1 

n 

Q 

21(0) 
nk | m 

n ≤ k + 1 . (62)

hich can be derived for a general axisymmetric scatterer from the

ntegral expressions given in Refs. [11,20] . 

. Quasistatic limit for T 11 

This block determines the scattered magnetic multipole field in-

uced by an incident magnetic multipole field. For non-magnetic

articles, this matrix is zero in the static case and only arises from

on-zero frequency interactions. We can obtain the matrix ele-

ents using a similar method to that for T 21 , this time formulating

he problem in terms of magnetic fields. 

.1. General formulation 

Following the approach for T 21 , the matrix T 11 can be found by

onsidering an incident field of magnetic multipoles, but here the

pherical vector wave functions must be expanded to second or-

er: 

 e = 

∞ ∑ 

n = m 

a nm 

[
RgN 

( 0 ) 
nm 

( k o r ) + RgN 

( 2 ) 
nm 

( k o r ) 
]
, (63)

 i = s 

∞ ∑ 

n = m 

c ( 
0 ) 

nm 

[
RgN 

( 0 ) 
nm 

( k i r ) + RgN 

( 2 ) 
nm 

( k i r ) 
]

+ c ( 
2 ) 

nm 

RgN 

( 0 ) 
nm 

( k i r ) + d nm 

RgM 

( 0 ) 
nm 

( k i r ) , (64)

 s = 

∞ ∑ 

n = m 

p nm 

N 

(0) 
nm 

(k o r ) + q nm 

M 

(0) 
nm 

(k o r ) . (65)

his approach differs for the cases m = 0 and m � = 0, since the

ff diagonal T -matrix blocks are zero for m = 0 . To lowest order,

 

(0) 
nm 

= s −n a nm 

as in (30) , and the leftmost terms in H e and H i are

dentical. d nm 

, p nm 

and q nm 

are all kept to lowest order only. The

roblem is to solve for p nm 

and c (2) 
nm 

. 

To express RgN 

(2) 
nm 

with harmonic functions, we note that for a

olution of the Helmholtz equation [21] 

 × ∇ × (r ψ) = ∇[(1 + r∂ r ) ψ] + r k 2 ψ. (66)

hen we express the incident field to second order as: 

 e = H 

(0) 
e + ∇(k 2 o r 

2 U 

∇ 

e ) + r k 2 o U 

r 
e (67)

here both U 

∇ 

e and U 

r 
e satisfy Laplace’s equation. H 

(0) 
e does not

nteract with the spheroid so may be left in vector form. For the

ther fields we may write 

 i = H 

(0) 
e + s 2 

[∇(k 2 o r 
2 U 

∇ 

e ) + r k 2 o U 

r 
e 

]
− ∇U 

N 
i 

+ ∇ × (r U 

M 

i ) , (68)

 s = −∇U 

N 
s + ∇ × (r U 

M 

s ) . (69)

s in (64) , the first three terms of H i on the right hand side are

nown, while U 

M 

i 
and U 

M 

s are determined from R 

21 and T 21 . This

eaves us to determine the two potentials U 

N 
i 

and U 

N 
s . For this

roblem it appears most straightforward to apply the two mag-

etic field boundary conditions only, since for m = 0 the condition

or ˆ n · E is redundant. 
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Fig. 1. Schematics of the scattering problem for prolate and oblate spheroids. 
.2. Prolate spheroids, m = 0 

For m = 0 , T 21 and T 12 are both zero and the problem is de-

oupled from any interactions of electric multipoles. This means

 

M 

i 
= U 

M 

s = 0 . The boundary conditions are ˆ ξ · H i = 

ˆ ξ · H o and

 · H i = ̂

 η · H o , since ̂ φ · H = 0 . These conditions become respec-

ively 

(s 2 −1) k 2 o f 
2 
[
∂ ξ [(ξ 2 +η2 −1) U 

∇ 

e ] − ξU 

r 
e 

]
+ ∂ ξU 

N 
i = ∂ ξU 

N 
s , (70) 

(s 2 −1) k 2 o f 
2 
[
∂ η[(ξ 2 +η2 −1) U 

∇ 

e ] − ηU 

r 
e 

]
+ ∂ ηU 

N 
i = ∂ ηU 

N 
s . (71) 

or the second boundary condition it is convenient to integrate

ver η. Then we expand the fields as series of spheroidal har-

onics, apply recurrence identities for the Legendre polynomials,

nd re-index the summations to express the η dependence of each

erm in the series as P n ( η). There is a lot of algebra so we skip to

he final result: 

 

11(0) 
nk | 0 = −i (s 2 − 1)(ξ 2 

0 − 1)(k o f ) 
n + k +3 

B 

0 
n B 

0 
k 

k + 1 

min (n,k ) ∑ 

p=0 

e nk e np 

(n − p)!!(n + p + 1)!!(k − p)!!(k + p + 1)!! 

×
{

(2 p + 1) 

(
P p P 

′ 
p 

(2 p + 3)(2 p − 1) 
− k 

2 k + 3 

ξ0 P p P p 

)
− k − p 

k + p + 3 

p + 2 

2 p + 3 

P p+2 P 
′ 
p + 

n − p 

n + p + 3 

p + 1 

2 p + 3 

P p P 
′ 
p+2 

− (k + 3)(k − n )(p + 1)(p + 2) 

2(2 k + 3)(n + p + 3)(k + p + 3) 
[ P p P 

′ 
p+2 − P p+2 P 

′ 
p ] 

}
(72) 

here P p ≡ P p ( ξ 0 ). Unlike the other T-matrix blocks, this has no

og terms or singular points – it is a polynomial in ξ 0 . Despite

ts appearance, one can check numerically that this expression is

ctually symmetric about n and k , as it should be. None of the

erms individually are symmetric, making it hard to recognise a

ymmetric form of this expression. This suggests there could be

impler approach to obtaining the matrix, maybe where the 2 nd 

rder fields are split differently to (67) or a combination of one

lectric and one magnetic boundary condition could be applied in-

tead. 

.3. Prolate spheroids, m � = 0 

For m � = 0, the problem has the additional complication of cou-

ling from the electric multipoles induced in both the internal and

cattered fields. In this case the boundary condition on ̂

 η · H is too

omplicated, but the condition on 

̂ φ · H is non-zero and manage-

ble. The boundary conditions are 

(s 2 − 1) k 2 o f 
2 
[
∂ ξ [(ξ 2 + η2 − 1) U 

∇ 

e ] − ξU 

r 
e 

]
+ 

η f 

ξ 2 − 1 

∂ φ[ U 

M 

s − U 

M 

i ] = ∂ ξ [ U 

N 
s − U 

N 
i ] , (73) 

(s 2 − 1) k 2 o r 
2 U 

∇ 

e − r sin θ∂ θ
[
U 

M 

s − U 

M 

i 

]
= ∂ φ

[
U 

N 
s − U 

N 
i 

]
. (74) 

he derivative ∂ θ can be applied directly to the spherical harmon-

cs, which splits them into two different orders, adding another

ayer of complication. All potentials are harmonic and should be

xpanded on a basis of spheroidal harmonics, and then related to

heir corresponding expansion in spherical wave functions. The se-

ies coefficients d m 

n , q m 

n for U 

M 

i 
, U 

M 

s are given by R 

21 and T 21 . The

nal result is: 

T 11(0) 
nk | m 

= 

−i (ξ 2 
0 − 1)(k o f ) n + k +3 (n − m )! 

γ m 

n n (2 n − 1)!! 
n ∑ 

p= m 

e nk e np 

(n − p)!!(n + p + 1)!! 

{
(s 2 − 1) γ m 

k 

(2 k + 3)!! 
αm 

kp 

×
[

(k − n )(p − m + 1)(p − m + 2)(k + 3) 

2(2 p + 1)(n + p + 3)(k + p + 3) 

[ P m 

p P 
m ′ 
p+2 − P m 

p+2 P 
m ′ 
p ] − kξ0 P 

m 

p P 
m 

p 

]
 

k +1 ∑ 

q = max (p−1 ,m ) 

iγ m 

q (k o f ) q −k −1 s q +1 

(2 q + 1)!! 
R 

21 
qk | m 

×
[
−
(

mP m 

p 

ξ 2 
0 

− 1 

+ ξ0 P 
m ′ 
p 

q + 1 

m 

)
(

p − m 

2 p − 1 

αm 

q,p−1 P 
m 

p−1 + 

p + m + 1 

2 p + 3 

αq,p+1 P 
m 

p+1 

)
+ 

q − m + 1 

m 

αm 

q +1 ,p P 
m 

p P 
m ′ 
p 

]
 

p+1 ∑ 

q = m 

γ m 

q (2 q − 1)!! 

(k o f ) q + k +2 
T 21 

qk | m 

×
[(

mP m 

p 

ξ 2 
0 

− 1 

− ξ0 P 
m ′ 
p 

q 

m 

)
(

p − m 

2 p − 1 

βm 

q,p−1 Q 

m 

p−1 + 

p + m + 1 

2 p + 3 

βq,p+1 Q 

m 

p+1 

)
+ 

q + m 

m 

βm 

q −1 ,p Q 

m 

p P 
m ′ 
p 

] }
. (75) 

Where αm 

nk 
and βm 

nk 
are the coefficients in the expansions

C2) and (C4) in the appendix. Again the matrix is symmetric de-

pite its appearance, and it is likely that simplified expressions

ould be found. 

. Discussion 

.1. Evaluating and checking expressions 

For convenience, Matlab codes to evaluate the quasistatic ma-

rices are attached as supplementary material. 

For oblate spheroids, as mentioned earlier, all expressions for

he matrices in this paper can be used as they are. The Legendre

unctions should be defined from their definition “off the cut”, ie.

ll complex space except on the real line from −1 to 1. Matlab

odes to evaluate these Legendre functions are also provided. 

All the obtained expressions were checked against the exact T -

atrix results, which can be computed to a high accuracy [14,22] ,

nd the relative error is plotted in Fig. 2 . The radiative correction

as also applied to the quasi-static T -matrix: T → T (I − T ) −1 [23] ,

hich had a noticeable increase in accuracy for larger particles (for
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Fig. 2. − log 10 (relative error) of the quasistatic T -matrix expressions compared to the exact solutions, for a silver spheroid in water, with a wavelength of 400 nm, (ε = 

−6 . 4572 + 0 . 2993 i ) 
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example the spheroid on the right plot). Results are similar to the

error plots for T 22 presented in [11] . This numerical check provides

independent confirmation of the validity of these analytic formu-

lae. The size parameter is ˜ X = k 1 r eq = k 1 
3 
√ 

c 2 a where r eq is the ra-

dius of the volume equivalent sphere. 

The accuracy generally improves as the size parameter ˜ X de-

creases, and the approximations appear to somewhat favour low

aspect ratios. Accuracy increases modestly with order, and tends

to be more accurate for ε with positive real part. 

6.2. Depolarization factors 

The T - and R -matrix expressions contain what we may call gen-

eralised depolarisation factors: 

L m 

n (ξ ) = (ξ 2 − 1) P m ′ 
n (ξ ) Q 

−m 

n (ξ ) , (76)

which reduce to the well known dipolar depolarisation factors L x ,

L y , L z for n = 1 , and obey the sum rule (see appendix for proof): 

n ∑ 

m = −n 

L m 

n = n. (77)

For n = 1 this is equivalent to L x + L y + L z = 1 . 

We can also find integral expressions for the depolarisation fac-

tors by comparison with the EBCM. In the quasistatic limit of the

EBCM for axisymmetric particles the diagonal elements of Q 

22 may

be expressed as (after some manipulation) 

Q 

22 
nn | m 

= s n −1 
{ 

1 + (s 2 − 1) 
[ 

n 

2 n + 1 

− (−) m 

2 

×∫ π

0 

d θ sin θP −m 

n ( cos θ ) 
d P m 

n ( cos θ ) 

d θ

1 

r(θ ) 

d r(θ ) 

d θ

] } 

. (78)

where r ( θ ) defines the surface of the scatterer. Eq. (78) reduces

to the approximate (if the internal field is nearly uniform) dipolar

responses in [24] . As r ( θ ) becomes constant (i.e. for a sphere), the

integral disappears. 

For spheroids 

r(θ ) = c 

√ 

ξ 2 
0 

− 1 

ξ 2 
0 

− cos 2 θ
⇒ 

1 

r 

d r 

d θ
= − sin θ cos θ

ξ 2 
0 

− cos 2 θ
. (79)
s

nd from (20) we have for the diagonal 

 

22 
nn | m 

= s n −1 [1 + (s 2 − 1) L m 

n ] . (80)

omparing (80) and (78) we find 

 

m 

n = 

n 

2 n + 1 

+ 

(−) m 

2 

∫ π

0 

d θP −m 

n 

d P m 

n 

d θ

sin 

2 θ cos θ

ξ 2 
0 

− cos 2 θ
. (81)

his agrees numerically with (76) , although analytically is not ob-

ious. We have introduced (81) not as a practical device but as an

xtension of the integral expression in [24] and to highlight the

onnection with the EBCM. 

.3. Quasistatic plasmon resonances of spheroids 

In all matrix elements expressions, we see that the expression

 + (ε − 1) L m 

n (ξ0 ) appears as a denominator. For metallic scatter-

rs, the real part of ε is negative and this denominator can ap-

roach zero for a certain wavelength if losses (imaginary part)

re small. This result in a very strong optical response commonly

eferred to as a localized surface plasmon resonance (LSPR) of

he nanoparticle [25] . For a sphere, these resonances occur for

 (ε) = −2 for the dipolar resonance and � (ε) = −(n + 1) /n for n -

ultipolar resonances. 

The generalized depolarization factors allow us to define and

tudy these resonances in spheroids. They occur for: 

 ( εres ) = 1 − 1 

L m 

n (ξ0 ) 
(82)

or all n ≥ 1, m ≥ 0. For n = 1 , this reduces to the known dipolar

SPR of a spheroid [25] , where excitation along z corresponding to

 

0 
1 
, and along x or y corresponding to L 1 1 . 

The elements T 
i j 

nk | m 

with n ≤ 2 or k ≤ 2 have just one resonance,

nd many elements share the same resonance condition, for exam-

le T 11 
11 | 1 , T 21 

21 | 1 , T 22 
22 | 1 all resonate at 1 + (ε − 1) L 1 

2 
(ξ0 ) = 0 . These res-

nances are well known from the solution of the scattering prob-

em in spheroidal coordinates [26] , but here the resonances are as-

ociated with their excitations from spherical multipoles through

he T -matrix. For small aspect ratios, the resonances are split rela-

ive to the spherical case, and for higher orders n , there are more

plittings (one for each m ≤ n ), but the shifts are small. 
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In the spherical limit, ξ 0 → ∞ , and the limits of the Legendre

unctions are ( [27] , 8.776): 

lim 

→∞ 

P m 

n (ξ ) = 

(2 n − 1)!! 

(n − m )! 
ξ n (83) 

lim 

→∞ 

Q 

m 

n (ξ ) = (−) m 

(n + m )! 

( 2 n + 1)!! 
ξ−n −1 (84) 

lim 

→∞ 

L m 

n = 

n 

2 n + 1 

(85) 

hich lead to the small sphere resonance conditions, � (εres ) =
(n + 1) /n, as expected. 

. Conclusion 

We have provided an approach to find the quasistatic limit of

 for any axisymmetric particle, and in the case of spheroids, this

pproach leads to analytic expressions. 

For non-magnetic particles, the magnetic multipole field does

ot interact with the object in the static limit. This means that this

nteraction cannot be seen without considering at least the low-

st two orders of the spherical wave functions. This is exactly the

ase for a sphere, where the T -matrix reduces to the electric and

agnetic Mie susceptibilities. The quasistatic limit of the electric

usceptibilities is obtained from an electrostatics problem, while in

his limit the magnetic susceptibilities are zero. For magnetic par-

icles however, T 11 is non-zero to the lowest order and could be

btained from a magnetostatics problem, with very similar formal-

sm to the electrostatics problem for T 22 . 

In a recent paper [17] the T -matrix was found to 3 rd lowest or-

er, i.e. O(X 6 ) , which involves only up to multipolarity n = 3 . The

esults were derived by direct Taylor expansion of the EBCM, and

re particularly relevant in the context of plane wave scattering. In

ontrast, here we have found the lowest non-zero order of the in-

ividual elements, by considering a point source excitation where

very T -matrix element is equally important. Some of the results

f these two approaches coincide, in particular the lowest orders

f T 22 
11 | m 

, T 11 
11 | m 

, T 22 
22 | m 

, T 22 
13 | m 

, T 21 
12 | 1 , T 21 

21 | 1 (and their symmetric coun-

erparts) for m = 0 , 1 , 2 . These results were used to confirm and

implify some of the ECBM-derived expressions. 

We believe these analytic expressions will be useful in fun-

amental studies of the T -matrix method, for example in rela-

ion with the Rayleigh hypothesis and analysis of quasistatic res-

nances. 
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ppendix A. Definitions of Legendre functions 

There exist different definitions of the Legendre functions

 

m 

n (x ) , Q 

m 

n (x ) for x real, | x | < 1 (the branch cut) and off the cut. First

f all, the Legendre polynomials are defined as (which applies on

nd off the cut) 

 n (x ) = 

1 

2 

n n ! 

d 

n 

d x n 
(x − 1) n . (A1) 

For the spherical harmonics (where cos θ is on the cut): 

 

m 

n ( cos θ ) = sin 

m θ
(

d 

d cos θ

)
m P n ( cos θ ) . (A2) 

ome authors multiply by (−) m in their definition. For the

pheroidal harmonics, the coordinate ξ is off the branch cut for

(

oth prolate and oblate spheroidal coordinates. Here the Legendre

unctions of the second kind are 

 n (ξ ) = 

1 

2 

∫ 1 

−1 

P n (t) 

ξ − t 
d t. (A3) 

or m > 0 this manuscript uses the definitions 

 

m 

n (ξ ) = (ξ + 1) m/ 2 (ξ − 1) m/ 2 d 

m 

d ξm 

P n (ξ ) , (A4) 

 

m 

n (ξ ) = (ξ + 1) m/ 2 (ξ − 1) m/ 2 d 

m 

d ξm 

Q n (ξ ) . (A5) 

he factors (ξ + 1) m/ 2 (ξ − 1) m/ 2 have not been combined into

(ξ 2 − 1) m/ 2 in order to give the correct results for all complex

off the cut. These definitions coincide with the general defi-

itions in terms of hypergeometric functions, which are imple-

ented in Maple as LegendreQ(n,m,x) and in Mathematica as

egendreQ[n,m,3,x] . 
Moreover, for negative order, we have: 

 

−m 

n = (−) m 

(n − m )! 

( n + m )! 
P m 

n (A6) 

nd similarly for Q 

m 

n . 

Finally, their derivatives can be evaluated as 

d P m 

n (ξ ) 

d ξ
= 

(n − m + 1) P m 

n +1 (ξ ) − (n + 1) ξP m 

n (ξ ) 

ξ 2 − 1 

, (A7) 

d Q 

m 

n (ξ ) 

d ξ
= 

(n − m + 1) Q 

m 

n +1 (ξ ) − (n + 1) ξQ 

m 

n (ξ ) 

ξ 2 − 1 

. (A8) 

ppendix B. Proof of sum rule for L m 

n 

First we re-express the sum rule (77) as 

n ∑ 

 = −n 

P −m ′ 
n (ξ ) Q 

m 

n (ξ ) = 

n 

ξ 2 − 1 

. (B1) 

e will use the result 
 

m 

P −m 

n (ξ ) Q 

m 

n (ξ ) = Q 0 (ξ ) , (B2) 

hich can be proved by integrating a special case of the “addition

heorem” [28] : 
 

m 

(−) m P −m 

n (x ) P m 

n (x ) = 1 (B3) 

nd using [29] (note their P m 

n (z > 1) is out by (−) m from more

ecent definitions, including ours) 

1 

2 

∫ 1 

−1 

P −m 

n (x ) P m 

n (x ) 

ξ − x 
d x = (−) m P −m 

n (ξ ) Q 

m 

n (ξ ) (B4) 

or both the left and right hand sides of (B3) . 

Then we may differentiate (B2) to obtain: 

 

m 

P −m ′ 
n (ξ ) Q 

m 

n (ξ ) + P −m 

n (ξ ) Q 

m ′ 
n (ξ ) = 

−1 

ξ 2 − 1 

. (B5) 

e can then sum the Wronskian relation of the Legendre functions

ver m 

 

−m ′ 
n (ξ ) Q 

m 

n (ξ ) − P −m 

n (ξ ) Q 

m ′ 
n (ξ ) = 

−1 

ξ 2 − 1 

(B6) 

 

∑ 

m 

P −m ′ 
n (ξ ) Q 

m 

n (ξ ) − P −m 

n (ξ ) Q 

m ′ 
n (ξ ) = −2 n + 1 

ξ 2 − 1 

. (B7) 

inally, (B5) and (B7) may be combined and rearranged to obtain

B1) . 
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Appendix C. Relationships between spherical and spheroidal 

solid harmonics 

Below are the relations between spherical and spheroidal har-

monics used throughout the manuscript. The azimuthal depen-

dence e ± im φ is omitted since it is the same on both sides. Deriva-

tions can be found in [12,13] . 

P m 

n (ξ ) P m 

n (η) = 

(n + m )! 

(n − m )! 

n ∑ 

k = m 

e nk (−) (n −k ) / 2 

× (n + k − 1)!! 

(n − k )!!(k + m )! 

(
r 

f 

)k 

P m 

k ( cos θ ) (C1)

(
r 

f 

)n 

P m 

n ( cos θ ) = (n + m )! 

n ∑ 

k = m 

e nk 

× (2 k + 1) 

(n − k )!!(n + k + 1)!! 

(k − m )! 

(k + m )! 
P m 

k (ξ ) P m 

k (η) (C2)

Q 

m 

n (ξ ) P m 

n (η) = (−) m 

(n + m )! 

( n − m )! 

∞ ∑ 

k = n 
e nk 

× (k − m )! 

(k − n )!!(k + n + 1)!! 

(
f 

r 

)k +1 

P m 

k ( cos θ ) (C3)

(
f 

r 

)n +1 

P m 

n ( cos θ ) = 

1 

(n − m )! 

∞ ∑ 

k = n 
e nk (−) (n −k ) / 2+ m 

× (2 k + 1)(n + k − 1)!! 

(k − n )!! 

(k − m )! 

(k + m )! 
Q 

m 

k (ξ ) P m 

k (η) (C4)

These expressions can be written more concisely by defining

the coefficients: 

αm 

nk = 

(n + m )!(2 k + 1) 

(n − k )!!(n + k + 1)!! 

(k − m )! 

(k + m )! 
(C5)

αm 

nk = 0 n < k or n + k odd 

βm 

nk = (−) (n −k ) / 2+ m 

(2 k + 1)(n + k − 1)!! 

( n − m )!(k − n )!! 

( k − m )! 

( k + m )! 
. (C6)

βm 

nk = 0 n > k n < k or n + k odd 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jqsrt.2018.12.017 . 
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